yangxinsci1993
Add files
eafc169
raw
history blame
1.59 kB
import torch
from transformers import pipeline
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
# Load trained model
model = AutoModelForSeq2SeqLM.from_pretrained("/output/reframer")
tokenizer = AutoTokenizer.from_pretrained("/output/reframer")
reframer = pipeline('summarization', model=model, tokenizer=tokenizer)
def reframe(text, strategy):
text_with_strategy = text + "Strategy: ['" + strategy + "']"
#Input Control
#The input text cannot be too short to ensure it has substantial content to be reframed. It also cannot be too long to ensure the text has a focused idea.
if len(text) < 15 or len(text) > 150:
return "Please try again by inputing text with moderate length."
if TextBlob(text).sentiment.polarity > 0.2:
return "Please try again by inputing text that is negative."
from hatesonar import Sonar
sonar = Sonar()
if sonar.ping(text)['classes'][1]['confidence'] > 0.8:
return "Please try again by not inputing offensive language."
#if TextBlob(text).sentiment.polarity > 0:
# return "Please try again by inputing text that is negative."
return reframer(text_with_strategy)[0]['summary_text']
import gradio as gr
with gr.Blocks() as demo:
text = gr.Textbox(label="Original Text")
radio = gr.Radio(
["thankfulness", "neutralizing", "optimism", "growth", "impermanence", "self_affirmation"], label="Strategy to use?"
)
output = gr.Textbox(label="Reframed Output")
radio.change(fn=reframe, inputs=[text, radio], outputs=output)
demo.launch()