Spaces:
Runtime error
Runtime error
import gradio as gr | |
gr.Interface.load("tiiuae/falcon-40b").launch() | |
# import gradio as gr | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# import transformers | |
# import torch | |
# def falcon(input_text): | |
# model = "tiiuae/falcon-40b" | |
# tokenizer = AutoTokenizer.from_pretrained(model) | |
# pipeline = transformers.pipeline( | |
# "text-generation", | |
# model=model, | |
# tokenizer=tokenizer, | |
# torch_dtype=torch.bfloat16, | |
# trust_remote_code=True, | |
# device_map="auto", | |
# ) | |
# sequences = pipeline( | |
# input_text, # "Was ist das höchste Gebäude in der Welt?" | |
# max_length=200, | |
# do_sample=True, | |
# top_k=10, | |
# num_return_sequences=1, | |
# eos_token_id=tokenizer.eos_token_id, | |
# ) | |
# for seq in sequences: | |
# print(f"Result: {seq['generated_text']}") | |
# return sequences[0]['generated_text'] | |
# iface = gr.Interface(fn=falcon, inputs="text", outputs="text") | |
# iface.launch() # To create a public link, set `share=True` | |