File size: 5,708 Bytes
c318cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347764
 
 
 
 
c318cb1
 
d347764
 
 
 
c318cb1
d347764
 
c318cb1
 
b9bb0a2
c318cb1
 
 
b9bb0a2
c318cb1
 
d347764
 
 
c318cb1
d347764
 
 
c318cb1
 
 
 
 
d347764
c318cb1
 
 
 
 
d347764
 
 
 
 
 
 
 
 
f805e49
 
b9bb0a2
 
f805e49
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
3946ba6
c737803
b9bb0a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# import gradio as gr
# import numpy as np
# import torch
# from datasets import load_dataset
# from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline


# device = "cuda:0" if torch.cuda.is_available() else "cpu"

# # load speech translation checkpoint
# asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device)

# # load text-to-speech checkpoint and speaker embeddings
# model_id = "microsoft/speecht5_tts" #"Ellight/speecht5_finetuned_voxpopuli_nl"  # update with your model id
# # pipe = pipeline("automatic-speech-recognition", model=model_id)
# model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation",trust_remote_code=True))
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
# # speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)

# processor = SpeechT5Processor.from_pretrained(model_id)

# replacements = [
#     ("à", "a"),
#     ("ç", "c"),
#     ("è", "e"),
#     ("ë", "e"),
#     ("í", "i"),
#     ("ï", "i"),
#     ("ö", "o"),
#     ("ü", "u"),
# ]

# def cleanup_text(text):
#     for src, dst in replacements:
#         text = text.replace(src, dst)
#     return text

# def synthesize_speech(text):
#     text = cleanup_text(text)
#     inputs = processor(text=text, return_tensors="pt")
#     speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)

#     return gr.Audio.update(value=(16000, speech.cpu().numpy()))

# def translate(audio):
#     outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "Dutch"})
#     return outputs["text"]


# def synthesise(text):
#     text = cleanup_text(text)
#     inputs = processor(text=text, return_tensors="pt")
#     speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
#     return speech.cpu()


# def speech_to_speech_translation(audio):
#     translated_text = translate(audio)
#     synthesised_speech = synthesise(translated_text)
#     synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
#     return 16000, synthesised_speech

import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from transformers import VitsModel, VitsTokenizer

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)

vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
    return outputs["text"]

def synthesise(text):
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(inputs["input_ids"])
    speech = outputs.audio[0]
    
    return speech.cpu()
    
# def synthesise(text):
#     inputs = processor(text=text, return_tensors="pt", padding='max_length', truncation=True)
#     speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
#     return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_voxpopuli_it](https://huggingface.co/Sandiago21/speecht5_finetuned_voxpopuli_it) checkpoint for text-to-speech, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Dutch Audio dataset:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()