Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
import numpy as np
|
6 |
+
import logging
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(level=logging.DEBUG)
|
12 |
+
|
13 |
+
# Initialize FastAPI app
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Load your trained model
|
17 |
+
model = load_model('model.h5')
|
18 |
+
class_names = ['melanoma', 'nevus', 'seborrheic_keratosis']
|
19 |
+
|
20 |
+
def preprocess_image(img, target_size):
|
21 |
+
"""Resize and preprocess the image for the model."""
|
22 |
+
if img.mode != "RGB":
|
23 |
+
img = img.convert("RGB")
|
24 |
+
img = img.resize(target_size)
|
25 |
+
img_array = image.img_to_array(img)
|
26 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
27 |
+
return img_array
|
28 |
+
|
29 |
+
@app.post("/predict")
|
30 |
+
async def predict(file: UploadFile = File(...)):
|
31 |
+
if not file:
|
32 |
+
raise HTTPException(status_code=400, detail="No file provided")
|
33 |
+
try:
|
34 |
+
# Read the file's content into a BytesIO object
|
35 |
+
img_bytes = io.BytesIO(await file.read())
|
36 |
+
|
37 |
+
# Use PIL to open the image
|
38 |
+
img = Image.open(img_bytes)
|
39 |
+
img_array = preprocess_image(img, (224, 224))
|
40 |
+
|
41 |
+
# Make prediction
|
42 |
+
predictions = model.predict(img_array)
|
43 |
+
|
44 |
+
predicted_class = np.argmax(predictions, axis=1)
|
45 |
+
|
46 |
+
# Return the prediction
|
47 |
+
predictions = {
|
48 |
+
'class': class_names[predicted_class[0]],
|
49 |
+
'confidence': float(predictions[0][predicted_class[0]])
|
50 |
+
}
|
51 |
+
return JSONResponse(content=predictions)
|
52 |
+
except Exception as e:
|
53 |
+
logging.debug(f"Error processing the file: {str(e)}")
|
54 |
+
raise HTTPException(status_code=500, detail=f"Error processing the file: {str(e)}")
|
55 |
+
|