import gradio as gr | |
from transformers import pipeline | |
# Load the fine-tuned model from Hugging Face Hub | |
classifier = pipeline("text-classification", model="Emanai/my-finetuned-bert2") | |
def classify_text(text): | |
result=classifier(text) | |
return '{} - {}'.format(result[0]['score'], result[0]['label']) | |
# Create a simple Gradio interface | |
iface = gr.Interface(fn=classify_text, inputs="text", outputs="label") | |
# Launch the Gradio app | |
iface.launch() |