File size: 6,385 Bytes
d896bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import copy
import os
import random

import numpy as np
import torch
import muspy
from prettytable import PrettyTable

from constants import PitchToken, DurationToken
import constants
import generation_config


def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(seed)
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)


def append_dict(dest_d, source_d):

    for k, v in source_d.items():
        dest_d[k].append(v)


def print_params(model):

    table = PrettyTable(["Modules", "Parameters"])
    total_params = 0

    for name, parameter in model.named_parameters():

        if not parameter.requires_grad:
            continue

        param = parameter.numel()
        table.add_row([name, param])
        total_params += param

    print(table)
    print(f"Total Trainable Parameters: {total_params}")

    return total_params


def print_divider():
    print('—' * 40)


# Builds multitrack pianoroll (mtp) from content tensor containing logits and
# structure binary tensor
# c_logits: num_nodes x MAX_SIMU_TOKENS x d_token
# s_tensor: n_batches x n_bars x n_tracks x n_timesteps
def mtp_from_logits(c_logits, s_tensor):

    mtp = torch.zeros((s_tensor.size(0), s_tensor.size(1), s_tensor.size(2),
                       s_tensor.size(3), c_logits.size(-2), c_logits.size(-1)),
                      device=c_logits.device, dtype=c_logits.dtype)

    size = mtp.size()
    mtp = mtp.reshape(-1, mtp.size(-2), mtp.size(-1))
    silence = torch.zeros((mtp.size(-2), mtp.size(-1)),
                          device=c_logits.device, dtype=c_logits.dtype)

    # Create silences with pitch EOS and PAD tokens
    silence[0, PitchToken.EOS.value] = 1.
    silence[1:, PitchToken.PAD.value] = 1.

    # Fill the multitrack pianoroll
    mtp[s_tensor.bool().reshape(-1)] = c_logits
    mtp[torch.logical_not(s_tensor.bool().reshape(-1))] = silence
    mtp = mtp.reshape(size)

    return mtp


# mtp: n_bars x n_tracks x n_timesteps x MAX_SIMU_TOKENS x d_token
def muspy_from_mtp(mtp):

    n_timesteps = mtp.size(2)
    resolution = n_timesteps // 4

    # Collapse bars dimension
    mtp = mtp.permute(1, 0, 2, 3, 4)
    size = (mtp.shape[0], -1, mtp.shape[3], mtp.shape[4])
    mtp = mtp.reshape(*size)

    tracks = []

    for track_idx in range(mtp.size(0)):

        notes = []

        for t in range(mtp.size(1)):
            for note_idx in range(mtp.size(2)):

                # Compute pitch and duration values
                pitch = mtp[track_idx, t, note_idx, :constants.N_PITCH_TOKENS]
                dur = mtp[track_idx, t, note_idx, constants.N_PITCH_TOKENS:]
                pitch, dur = torch.argmax(pitch), torch.argmax(dur)

                if (pitch == PitchToken.EOS.value or
                    pitch == PitchToken.PAD.value or
                    dur == DurationToken.EOS.value or
                        dur == DurationToken.PAD.value):
                    # The chord contains no additional notes, go to next chord
                    break

                if (pitch == PitchToken.SOS.value or
                        pitch == PitchToken.SOS.value):
                    # Skip this note
                    continue

                # Remapping duration values from [0, 95] to [1, 96]
                dur = dur + 1
                # Do not sustain notes beyond sequence limit
                dur = min(dur.item(), mtp.size(1) - t)

                notes.append(muspy.Note(t, pitch.item(), dur, 64))

        track_name = constants.TRACKS[track_idx]
        midi_program = generation_config.MIDI_PROGRAMS[track_name]
        is_drum = (track_name == 'Drums')

        track = muspy.Track(
            name=track_name,
            is_drum=is_drum,
            program=(0 if is_drum else midi_program),
            notes=copy.deepcopy(notes)
        )
        tracks.append(track)

    meta = muspy.Metadata()
    music = muspy.Music(tracks=tracks, metadata=meta, resolution=resolution)

    return music


def loop_muspy_music(muspy_music, n_loop, num_bars, resolution):

    # Get a deep copy of the original music object to avoid modifying it
    looped_music = copy.deepcopy(muspy_music)

    # Loop over the number of times we want to repeat the sequence
    for i in range(1, n_loop):
        # Loop over each track in the original music object
        for track_idx, track in enumerate(muspy_music.tracks):
            # Adjust the start times of the notes for each repetition and
            # add them to the corresponding track in the looped_music object
            for note in track.notes:
                new_note = copy.deepcopy(note)
                new_note.time += i * num_bars * 4 * resolution
                looped_music.tracks[track_idx].notes.append(new_note)

    return looped_music


def add_end_of_track(muspy_music):

    bar_length = 32

    # Determine the last timestep in the song
    last_time = max(
        note.start for track in muspy_music.tracks for note in track.notes)

    # Calculate the position of the current bar line
    current_bar_position = (last_time // bar_length) * bar_length

    # Check if there's any note starting or extending
    # into the current bar's end position
    notes = [
        note for track in muspy_music.tracks for note in track.notes
        if note.start + note.duration == current_bar_position + bar_length
    ]

    if not notes:
        # If no notes extend into the current bar's end position,
        # add a low-pitched note
        muspy_music.tracks[0].notes.append(
            muspy.Note(time=current_bar_position + bar_length,
                       duration=1, pitch=70, velocity=64))

    return muspy_music


def save_midi(muspy_song, save_dir, name):
    # Add low MIDI note at last timestep
    muspy_song.tracks[0].notes.append(
        muspy.Note(time=61, duration=3, pitch=23, velocity=1))
    muspy.write_midi(os.path.join(save_dir, name + ".mid"), muspy_song)


def save_audio(muspy_song, save_dir, name):
    soundfont_path = (generation_config.SOUNDFONT_PATH
                      if os.path.exists(generation_config.SOUNDFONT_PATH)
                      else None)
    muspy.write_audio(os.path.join(save_dir, name + ".wav"), muspy_song,
                      soundfont_path=soundfont_path)