Spaces:
Runtime error
Runtime error
File size: 6,385 Bytes
d896bd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import copy
import os
import random
import numpy as np
import torch
import muspy
from prettytable import PrettyTable
from constants import PitchToken, DurationToken
import constants
import generation_config
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
def append_dict(dest_d, source_d):
for k, v in source_d.items():
dest_d[k].append(v)
def print_params(model):
table = PrettyTable(["Modules", "Parameters"])
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad:
continue
param = parameter.numel()
table.add_row([name, param])
total_params += param
print(table)
print(f"Total Trainable Parameters: {total_params}")
return total_params
def print_divider():
print('—' * 40)
# Builds multitrack pianoroll (mtp) from content tensor containing logits and
# structure binary tensor
# c_logits: num_nodes x MAX_SIMU_TOKENS x d_token
# s_tensor: n_batches x n_bars x n_tracks x n_timesteps
def mtp_from_logits(c_logits, s_tensor):
mtp = torch.zeros((s_tensor.size(0), s_tensor.size(1), s_tensor.size(2),
s_tensor.size(3), c_logits.size(-2), c_logits.size(-1)),
device=c_logits.device, dtype=c_logits.dtype)
size = mtp.size()
mtp = mtp.reshape(-1, mtp.size(-2), mtp.size(-1))
silence = torch.zeros((mtp.size(-2), mtp.size(-1)),
device=c_logits.device, dtype=c_logits.dtype)
# Create silences with pitch EOS and PAD tokens
silence[0, PitchToken.EOS.value] = 1.
silence[1:, PitchToken.PAD.value] = 1.
# Fill the multitrack pianoroll
mtp[s_tensor.bool().reshape(-1)] = c_logits
mtp[torch.logical_not(s_tensor.bool().reshape(-1))] = silence
mtp = mtp.reshape(size)
return mtp
# mtp: n_bars x n_tracks x n_timesteps x MAX_SIMU_TOKENS x d_token
def muspy_from_mtp(mtp):
n_timesteps = mtp.size(2)
resolution = n_timesteps // 4
# Collapse bars dimension
mtp = mtp.permute(1, 0, 2, 3, 4)
size = (mtp.shape[0], -1, mtp.shape[3], mtp.shape[4])
mtp = mtp.reshape(*size)
tracks = []
for track_idx in range(mtp.size(0)):
notes = []
for t in range(mtp.size(1)):
for note_idx in range(mtp.size(2)):
# Compute pitch and duration values
pitch = mtp[track_idx, t, note_idx, :constants.N_PITCH_TOKENS]
dur = mtp[track_idx, t, note_idx, constants.N_PITCH_TOKENS:]
pitch, dur = torch.argmax(pitch), torch.argmax(dur)
if (pitch == PitchToken.EOS.value or
pitch == PitchToken.PAD.value or
dur == DurationToken.EOS.value or
dur == DurationToken.PAD.value):
# The chord contains no additional notes, go to next chord
break
if (pitch == PitchToken.SOS.value or
pitch == PitchToken.SOS.value):
# Skip this note
continue
# Remapping duration values from [0, 95] to [1, 96]
dur = dur + 1
# Do not sustain notes beyond sequence limit
dur = min(dur.item(), mtp.size(1) - t)
notes.append(muspy.Note(t, pitch.item(), dur, 64))
track_name = constants.TRACKS[track_idx]
midi_program = generation_config.MIDI_PROGRAMS[track_name]
is_drum = (track_name == 'Drums')
track = muspy.Track(
name=track_name,
is_drum=is_drum,
program=(0 if is_drum else midi_program),
notes=copy.deepcopy(notes)
)
tracks.append(track)
meta = muspy.Metadata()
music = muspy.Music(tracks=tracks, metadata=meta, resolution=resolution)
return music
def loop_muspy_music(muspy_music, n_loop, num_bars, resolution):
# Get a deep copy of the original music object to avoid modifying it
looped_music = copy.deepcopy(muspy_music)
# Loop over the number of times we want to repeat the sequence
for i in range(1, n_loop):
# Loop over each track in the original music object
for track_idx, track in enumerate(muspy_music.tracks):
# Adjust the start times of the notes for each repetition and
# add them to the corresponding track in the looped_music object
for note in track.notes:
new_note = copy.deepcopy(note)
new_note.time += i * num_bars * 4 * resolution
looped_music.tracks[track_idx].notes.append(new_note)
return looped_music
def add_end_of_track(muspy_music):
bar_length = 32
# Determine the last timestep in the song
last_time = max(
note.start for track in muspy_music.tracks for note in track.notes)
# Calculate the position of the current bar line
current_bar_position = (last_time // bar_length) * bar_length
# Check if there's any note starting or extending
# into the current bar's end position
notes = [
note for track in muspy_music.tracks for note in track.notes
if note.start + note.duration == current_bar_position + bar_length
]
if not notes:
# If no notes extend into the current bar's end position,
# add a low-pitched note
muspy_music.tracks[0].notes.append(
muspy.Note(time=current_bar_position + bar_length,
duration=1, pitch=70, velocity=64))
return muspy_music
def save_midi(muspy_song, save_dir, name):
# Add low MIDI note at last timestep
muspy_song.tracks[0].notes.append(
muspy.Note(time=61, duration=3, pitch=23, velocity=1))
muspy.write_midi(os.path.join(save_dir, name + ".mid"), muspy_song)
def save_audio(muspy_song, save_dir, name):
soundfont_path = (generation_config.SOUNDFONT_PATH
if os.path.exists(generation_config.SOUNDFONT_PATH)
else None)
muspy.write_audio(os.path.join(save_dir, name + ".wav"), muspy_song,
soundfont_path=soundfont_path)
|