chatdoc / ingest.py
Nikhil0987's picture
Upload ingest.py
c557618 verified
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
import os
from constants import CHROMA_SETTINGS
persist_directory = "db"
def main():
for root, dirs, files in os.walk("docs"):
for file in files:
if file.endswith(".pdf"):
print(file)
loader = PyPDFLoader(os.path.join(root, file))
documents = loader.load()
print("splitting into chunks")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
#create embeddings here
print("Loading sentence transformers model")
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
#create vector store here
print(f"Creating embeddings. May take some minutes...")
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist()
db=None
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
if __name__ == "__main__":
main()