Spaces:
Sleeping
Sleeping
File size: 8,272 Bytes
f6cf9b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import streamlit as st
import requests
import plotly.graph_objects as go
from geopy.geocoders import Nominatim
import pandas as pd
from datetime import datetime
import holidays
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import pickle
import xgboost as xgb
# Setting up the page configuration for Streamlit App
st.set_page_config(
page_title="Taxi",
# layout="wide",
initial_sidebar_state="expanded"
)
# Load the XGBoost model
#@st.cache_data()
def get_model():
model = pickle.load(open("models/model_xgb.pkl", "rb"))
return model
# Function to make prediction using the model and input data
def make_prediction(data):
model = get_model()
best_features = ['vendor_id', 'passenger_count', 'pickup_longitude', 'pickup_latitude',
'dropoff_longitude', 'dropoff_latitude', 'store_and_fwd_flag',
'pickup_hour', 'pickup_holiday', 'total_distance', 'total_travel_time',
'number_of_steps', 'haversine_distance', 'temperature',
'pickup_day_of_week_1', 'pickup_day_of_week_2', 'pickup_day_of_week_3',
'pickup_day_of_week_4', 'pickup_day_of_week_5', 'pickup_day_of_week_6',
'geo_cluster_1', 'geo_cluster_3', 'geo_cluster_5', 'geo_cluster_7',
'geo_cluster_9']
data_matrix = xgb.DMatrix(data, feature_names=best_features)
return model.predict(data_matrix)
def get_coordinates(address):
# Создание экземпляра геокодера
geolocator = Nominatim(user_agent="my_app")
# Получение координат по адресу
location = geolocator.geocode(address)
# Вывод широты и долготы
return (location.longitude, location.latitude)
def show_map(lon_from, lat_from, lon_to, lat_to):
# Создание карты
fig = go.Figure(go.Scattermapbox(
mode = "markers",
marker = {'size': 15, 'color': 'red'}
))
# Добавление флажков для точек
fig.add_trace(go.Scattermapbox(
mode = "markers",
lon = [lon_from, lon_to],
lat = [lat_from, lat_to],
marker = go.scattermapbox.Marker(
size=25,
color='red'
)
))
# Добавление линии между точками
fig.add_trace(go.Scattermapbox(
mode = "lines",
lon = [lon_from, lon_to],
lat = [lat_from, lat_to],
line = dict(width=2, color='green')
))
# Настройка отображения карты
fig.update_layout(
mapbox = {
'style': "open-street-map", # Стиль карты
'center': {'lon': (lon_from + lon_to) / 2, 'lat': (lat_from + lat_to) / 2}, # Центр карты
'zoom': 9, # Уровень масштабирования карты
},
showlegend = False,
height = 600, # Изменение высоты карты
width = 1200 # Изменение ширины карты
)
# Отображение карты
return fig
# Get total distance
def get_total_distance(start_longitude, start_latitude, end_longitude, end_latitude):
# Construct the URL for sending a request to the public OSRM server
url = f"http://router.project-osrm.org/route/v1/driving/{start_longitude},{start_latitude};{end_longitude},{end_latitude}?overview=false"
# Send a GET request to the OSRM server
response = requests.get(url)
# Process the response from the server
if response.status_code == 200:
data = response.json()
total_distance = data["routes"][0]["distance"] # Total distance in meters
total_travel_time = data["routes"][0]["duration"] # Total travel time in seconds
number_of_steps = len(data["routes"][0]["legs"][0]["steps"]) # Number of steps in the
return total_distance, total_travel_time, number_of_steps
# Get Harversine distance
def get_haversine_distance(lat1, lng1, lat2, lng2):
# Convert angles to radians
lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2))
# Earth's radius in kilometers
EARTH_RADIUS = 6371
# Calculate the shortest distance h using the Haversine formula
lat_delta = lat2 - lat1
lng_delta = lng2 - lng1
d = np.sin(lat_delta * 0.5) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(lng_delta * 0.5) ** 2
h = 2 * EARTH_RADIUS * np.arcsin(np.sqrt(d))
return h
# User input features
def user_input_features(lon_from, lat_from, lon_to, lat_to, passenger_count, temperature):
current_time = datetime.now()
pickup_hour= current_time.hour
today = datetime.today()
pickup_holiday = 1 if today in holidays.USA() else 0
total_distance, total_travel_time, number_of_steps = get_total_distance(lon_from, lat_from, lon_to, lat_to)
haversine_distance = get_haversine_distance(lat_from, lon_from, lat_to, lon_to)
weekday_number = current_time.weekday()
data = {'vendor_id': 1,
'passenger_count': passenger_count,
'pickup_longitude': lon_from,
'pickup_latitude': lat_from,
'dropoff_longitude': lon_to,
'dropoff_latitude': lat_to,
'store_and_fwd_flag': 0.0,
'pickup_hour': pickup_hour,
'pickup_holiday': pickup_holiday,
'total_distance': total_distance,
'total_travel_time': total_travel_time,
'number_of_steps': number_of_steps,
'haversine_distance': haversine_distance,
'temperature': temperature,
'pickup_day_of_week_1': 1 if weekday_number == 1 else 0,
'pickup_day_of_week_2': 1 if weekday_number == 2 else 0,
'pickup_day_of_week_3': 1 if weekday_number == 3 else 0,
'pickup_day_of_week_4': 1 if weekday_number == 4 else 0,
'pickup_day_of_week_5': 1 if weekday_number == 5 else 0,
'pickup_day_of_week_6': 1 if weekday_number == 6 else 0,
'geo_cluster_1':1,
'geo_cluster_3':0,
'geo_cluster_5':0,
'geo_cluster_7':0,
'geo_cluster_9':0
}
features = pd.DataFrame(data, index=[0])
return features
# Scale the input data using a pre-trained MinMaxScaler
def min_max_scaler(data):
scaler = pickle.load(open("models/min_max_scaler.pkl", "rb"))
data_scaled = scaler.transform(data)
return data_scaled
# Main function
def main():
if 'btn_predict' not in st.session_state:
st.session_state['btn_predict'] = False
# Sidebar
st.sidebar.markdown(''' # New York City Taxi Trip Duration''')
st.sidebar.image("img/taxi_img.png")
address_from = st.sidebar.text_input("Откуда:", value="New York, Liberty Island")
address_to = st.sidebar.text_input("Куда:", value="New York, 20 W 34th St")
passenger_count = st.sidebar.slider("Количество пассажиров", 1, 4, 1)
temperature = st.sidebar.slider("Temperature (C)", -20, 40, 15)
st.session_state['btn_predict'] = st.sidebar.button('Start')
if st.session_state['btn_predict']:
lon_from, lat_from = get_coordinates(address_from)
lon_to, lat_to = get_coordinates(address_to)
st.plotly_chart(show_map(lon_from, lat_from, lon_to, lat_to))
user_data = user_input_features(lon_from, lat_from, lon_to, lat_to, passenger_count, temperature)
# st.write(user_data)
data_scaled = min_max_scaler(user_data)
trip_duration = np.exp(make_prediction(data_scaled)) - 1
trip_duration = round(float(trip_duration) / 60)
st.markdown(f"""
<div style='background-color: lightgreen; padding: 10px;'>
<h2 style='color: black; text-align: center;'>Длительность поездки составит: {trip_duration} мин.</h2>
</div>
""", unsafe_allow_html=True)
# Running the main function
if __name__ == "__main__":
main()
|