File size: 6,935 Bytes
4ddb7d1
 
 
 
 
5168e0b
 
 
 
 
d107b45
 
4ddb7d1
5168e0b
 
4ddb7d1
 
 
921a12d
4ddb7d1
 
 
 
 
 
5168e0b
 
4ddb7d1
5168e0b
4ddb7d1
5168e0b
4ddb7d1
5168e0b
4ddb7d1
5168e0b
4ddb7d1
5168e0b
 
4ddb7d1
5168e0b
4ddb7d1
5168e0b
4ddb7d1
5168e0b
 
 
 
 
4ddb7d1
5168e0b
 
 
 
4ddb7d1
5168e0b
4ddb7d1
 
d107b45
 
 
5168e0b
 
 
d107b45
4ddb7d1
 
 
 
b9bbe8c
4ddb7d1
 
 
 
 
 
 
 
 
5168e0b
 
 
 
 
4ddb7d1
 
 
 
 
 
 
 
 
 
 
5168e0b
 
 
 
 
 
 
 
 
 
 
 
4ddb7d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5168e0b
 
4ddb7d1
 
 
 
 
5168e0b
 
 
 
 
4ddb7d1
5168e0b
4ddb7d1
5168e0b
4ddb7d1
 
 
 
fddedbc
5168e0b
 
 
 
 
4ddb7d1
 
fddedbc
 
4ddb7d1
 
5168e0b
 
d107b45
5168e0b
 
4ddb7d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc9899e
4ddb7d1
5168e0b
 
 
caad36f
4ddb7d1
 
 
 
 
 
 
 
 
37e3b76
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from haystack.components.generators import OpenAIGenerator
from haystack.utils import Secret
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.routers import ConditionalRouter
from haystack import Pipeline
# from haystack.components.writers import DocumentWriter
from haystack.components.embedders import SentenceTransformersTextEmbedder #, SentenceTransformersDocumentEmbedder
# from haystack.components.preprocessors import DocumentSplitter
# from haystack.components.converters.txt import TextFileToDocument
# from haystack.components.preprocessors import DocumentCleaner
from haystack_integrations.document_stores.chroma import ChromaDocumentStore
from haystack_integrations.components.retrievers.chroma import ChromaEmbeddingRetriever

# from haystack.document_stores.in_memory import InMemoryDocumentStore
# from haystack.components.retrievers import InMemoryEmbeddingRetriever

import gradio as gr

embedding_model = "Alibaba-NLP/gte-multilingual-base"


########################
####### Indexing #######
########################

# Skipped: now using Chroma

# In memory version for now
# document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")

# converter = TextFileToDocument()

# cleaner = DocumentCleaner()

# splitter = DocumentSplitter(split_by="word", split_length=200, split_overlap=100)

# embedder = SentenceTransformersDocumentEmbedder(model=embedding_model,
#                                                 trust_remote_code=True)

# writer = DocumentWriter(document_store=document_store)

# indexing = Pipeline()

# indexing.add_component("converter", converter)
# indexing.add_component("cleaner", cleaner)
# indexing.add_component("splitter", splitter)
# indexing.add_component("embedder", embedder)
# indexing.add_component("writer", writer)

# indexing.connect("converter", "cleaner")
# indexing.connect("cleaner", "splitter")
# indexing.connect("splitter", "embedder")
# indexing.connect("embedder", "writer")

# indexing.run({"sources": ["knowledge-plain.txt"]})


# Chroma version (no support for overlaps in documents)
# document_store = ChromaDocumentStore(persist_path="vstore_4012")

document_store = ChromaDocumentStore(
    persist_path="vstore_4012"
)

##################################
####### Answering pipeline #######
##################################
no_answer_message = (
    "I'm not allowed to answer this question. Please ask something related to "
    "APIs access in accordance DSA’s transparency and data-sharing provisions. "
    "Is there anything else I can do for you? "
)

relevance_prompt_template = """
Classify whether this user is asking for something related to social media APIs,
the Digital Services Act (DSA), or any topic related to online platforms’ compliance
with legal and data-sharing frameworks.

Relevant topics include:
- Social media API access
- Data transparency
- Compliance with DSA provisions
- Online platform regulations

Here is their message:
{{query}}

Here are the two previous messages. ONLY refer to these if the above message refers previous ones.

{% for message in user_history[-2:] %}
  * {{message["content"]}}

{% endfor %}

Instructions:
- Respond with “YES” if the query pertains to any of the relevant topics listed above and not mixed with off-topic content.
- Respond with “NO” if the query is off-topic and does not relate to the topics listed above.

Examples:
- Query: "How does the DSA affect API usage?"
- Response: "YES"

- Query: "How to make a pancake with APIs?"
- Response: "NO"

"""

routes = [
    {
        "condition": "{{'YES' in replies[0]}}",
        "output": "{{query}}",
        "output_name": "query",
        "output_type": str,
    },
    {
        "condition": "{{'NO' in replies[0]}}",
        "output": no_answer_message,
        "output_name": "no_answer",
        "output_type": str,
    }
]

query_prompt_template = """
Conversation history:
{{conv_history}}

Here is what the user has requested:
{{query}}

Instructions:
- Craft a concise, short informative answer to the user's request using the information provided below. 
- Synthesize the key points into a seamless response that appears as your own expert knowledge.
- Avoid direct quotes or explicit references to the documents.
- You are directly answering the user's query.

Relevant Information:
{% for document in documents %}
- {{ document.content }}
{% endfor %}

"""

def setup_generator(model_name, api_key_env_var="OPENAI_API_KEY", max_tokens=8192):
    return OpenAIGenerator(
        api_key=Secret.from_env_var(api_key_env_var),
        model=model_name,
        generation_kwargs={"max_tokens": max_tokens}
    )


llm = setup_generator("gpt-4o-mini", max_tokens=30)
llm2 = setup_generator("gpt-4o-mini")


embedder = SentenceTransformersTextEmbedder(model=embedding_model, trust_remote_code=True)
retriever = ChromaEmbeddingRetriever(document_store)

router = ConditionalRouter(routes=routes)
prompt_builder = PromptBuilder(template=relevance_prompt_template)
prompt_builder2 = PromptBuilder(template=query_prompt_template)


answer_query = Pipeline()

answer_query.add_component("prompt_builder", prompt_builder)
answer_query.add_component("llm", llm)
answer_query.add_component("router", router)
answer_query.add_component("embedder", embedder)
answer_query.add_component("retriever", retriever)
answer_query.add_component("prompt_builder2", prompt_builder2)
answer_query.add_component("llm2", llm2)

answer_query.connect("prompt_builder", "llm")
answer_query.connect("llm", "router")
answer_query.connect("router.query", "embedder")
answer_query.connect("embedder", "retriever")
answer_query.connect("retriever", "prompt_builder2")
answer_query.connect("prompt_builder2", "llm2")

answer_query.warm_up()


##########################
####### Gradio app #######
##########################

def chat(message, history):
    """
    Chat function for Gradio. Uses the pipeline to produce next answer.
    """
    conv_history = "\n\n".join([f'{message["role"]}: {message["content"]}' for message in history[-2:]])
    user_history = [message for message in history if message["role"] == "user"]
    results = answer_query.run({"user_history": user_history,
                                "query": message,
                                "conv_history": conv_history,
                                "top_k":3})
    if "llm2" in results:
        answer = results["llm2"]["replies"][0]
    elif "router" in results and "no_answer" in results["router"]:
        answer = results["router"]["no_answer"]
    else:
        answer = "Sorry, a mistake occured"
    return answer

if __name__ == "__main__":
    interface = gr.ChatInterface(
        fn=chat,
        type="messages",
        title="40.12 Chatbot",
        description="Ask me anything about social media APIs, the Digital Services Act (DSA), or online platform regulations.")

    interface.launch()