File size: 6,935 Bytes
4ddb7d1 5168e0b d107b45 4ddb7d1 5168e0b 4ddb7d1 921a12d 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 d107b45 5168e0b d107b45 4ddb7d1 b9bbe8c 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 5168e0b 4ddb7d1 fddedbc 5168e0b 4ddb7d1 fddedbc 4ddb7d1 5168e0b d107b45 5168e0b 4ddb7d1 cc9899e 4ddb7d1 5168e0b caad36f 4ddb7d1 37e3b76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
from haystack.components.generators import OpenAIGenerator
from haystack.utils import Secret
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.routers import ConditionalRouter
from haystack import Pipeline
# from haystack.components.writers import DocumentWriter
from haystack.components.embedders import SentenceTransformersTextEmbedder #, SentenceTransformersDocumentEmbedder
# from haystack.components.preprocessors import DocumentSplitter
# from haystack.components.converters.txt import TextFileToDocument
# from haystack.components.preprocessors import DocumentCleaner
from haystack_integrations.document_stores.chroma import ChromaDocumentStore
from haystack_integrations.components.retrievers.chroma import ChromaEmbeddingRetriever
# from haystack.document_stores.in_memory import InMemoryDocumentStore
# from haystack.components.retrievers import InMemoryEmbeddingRetriever
import gradio as gr
embedding_model = "Alibaba-NLP/gte-multilingual-base"
########################
####### Indexing #######
########################
# Skipped: now using Chroma
# In memory version for now
# document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
# converter = TextFileToDocument()
# cleaner = DocumentCleaner()
# splitter = DocumentSplitter(split_by="word", split_length=200, split_overlap=100)
# embedder = SentenceTransformersDocumentEmbedder(model=embedding_model,
# trust_remote_code=True)
# writer = DocumentWriter(document_store=document_store)
# indexing = Pipeline()
# indexing.add_component("converter", converter)
# indexing.add_component("cleaner", cleaner)
# indexing.add_component("splitter", splitter)
# indexing.add_component("embedder", embedder)
# indexing.add_component("writer", writer)
# indexing.connect("converter", "cleaner")
# indexing.connect("cleaner", "splitter")
# indexing.connect("splitter", "embedder")
# indexing.connect("embedder", "writer")
# indexing.run({"sources": ["knowledge-plain.txt"]})
# Chroma version (no support for overlaps in documents)
# document_store = ChromaDocumentStore(persist_path="vstore_4012")
document_store = ChromaDocumentStore(
persist_path="vstore_4012"
)
##################################
####### Answering pipeline #######
##################################
no_answer_message = (
"I'm not allowed to answer this question. Please ask something related to "
"APIs access in accordance DSA’s transparency and data-sharing provisions. "
"Is there anything else I can do for you? "
)
relevance_prompt_template = """
Classify whether this user is asking for something related to social media APIs,
the Digital Services Act (DSA), or any topic related to online platforms’ compliance
with legal and data-sharing frameworks.
Relevant topics include:
- Social media API access
- Data transparency
- Compliance with DSA provisions
- Online platform regulations
Here is their message:
{{query}}
Here are the two previous messages. ONLY refer to these if the above message refers previous ones.
{% for message in user_history[-2:] %}
* {{message["content"]}}
{% endfor %}
Instructions:
- Respond with “YES” if the query pertains to any of the relevant topics listed above and not mixed with off-topic content.
- Respond with “NO” if the query is off-topic and does not relate to the topics listed above.
Examples:
- Query: "How does the DSA affect API usage?"
- Response: "YES"
- Query: "How to make a pancake with APIs?"
- Response: "NO"
"""
routes = [
{
"condition": "{{'YES' in replies[0]}}",
"output": "{{query}}",
"output_name": "query",
"output_type": str,
},
{
"condition": "{{'NO' in replies[0]}}",
"output": no_answer_message,
"output_name": "no_answer",
"output_type": str,
}
]
query_prompt_template = """
Conversation history:
{{conv_history}}
Here is what the user has requested:
{{query}}
Instructions:
- Craft a concise, short informative answer to the user's request using the information provided below.
- Synthesize the key points into a seamless response that appears as your own expert knowledge.
- Avoid direct quotes or explicit references to the documents.
- You are directly answering the user's query.
Relevant Information:
{% for document in documents %}
- {{ document.content }}
{% endfor %}
"""
def setup_generator(model_name, api_key_env_var="OPENAI_API_KEY", max_tokens=8192):
return OpenAIGenerator(
api_key=Secret.from_env_var(api_key_env_var),
model=model_name,
generation_kwargs={"max_tokens": max_tokens}
)
llm = setup_generator("gpt-4o-mini", max_tokens=30)
llm2 = setup_generator("gpt-4o-mini")
embedder = SentenceTransformersTextEmbedder(model=embedding_model, trust_remote_code=True)
retriever = ChromaEmbeddingRetriever(document_store)
router = ConditionalRouter(routes=routes)
prompt_builder = PromptBuilder(template=relevance_prompt_template)
prompt_builder2 = PromptBuilder(template=query_prompt_template)
answer_query = Pipeline()
answer_query.add_component("prompt_builder", prompt_builder)
answer_query.add_component("llm", llm)
answer_query.add_component("router", router)
answer_query.add_component("embedder", embedder)
answer_query.add_component("retriever", retriever)
answer_query.add_component("prompt_builder2", prompt_builder2)
answer_query.add_component("llm2", llm2)
answer_query.connect("prompt_builder", "llm")
answer_query.connect("llm", "router")
answer_query.connect("router.query", "embedder")
answer_query.connect("embedder", "retriever")
answer_query.connect("retriever", "prompt_builder2")
answer_query.connect("prompt_builder2", "llm2")
answer_query.warm_up()
##########################
####### Gradio app #######
##########################
def chat(message, history):
"""
Chat function for Gradio. Uses the pipeline to produce next answer.
"""
conv_history = "\n\n".join([f'{message["role"]}: {message["content"]}' for message in history[-2:]])
user_history = [message for message in history if message["role"] == "user"]
results = answer_query.run({"user_history": user_history,
"query": message,
"conv_history": conv_history,
"top_k":3})
if "llm2" in results:
answer = results["llm2"]["replies"][0]
elif "router" in results and "no_answer" in results["router"]:
answer = results["router"]["no_answer"]
else:
answer = "Sorry, a mistake occured"
return answer
if __name__ == "__main__":
interface = gr.ChatInterface(
fn=chat,
type="messages",
title="40.12 Chatbot",
description="Ask me anything about social media APIs, the Digital Services Act (DSA), or online platform regulations.")
interface.launch() |