File size: 21,736 Bytes
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# coding=utf-8
# Copyright 2023 The Taming Transformers Authors and The HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from functools import partial
from typing import Tuple
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

from vqvae.modeling_utils import ConfigMixin, ModelMixin, register_to_config


class Upsample(nn.Module):
    def __init__(self, in_channels: int, with_conv: bool):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = nn.Conv2d(
                in_channels,
                in_channels,
                kernel_size=3,
                stride=1,
                padding=1,
            )

    def forward(self, hidden_states):
        hidden_states = torch.nn.functional.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            hidden_states = self.conv(hidden_states)
        return hidden_states


class Downsample(nn.Module):
    def __init__(self, in_channels: int, with_conv: bool):
        super().__init__()

        self.with_conv = with_conv
        if self.with_conv:
            self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)

    def forward(self, hidden_states):
        if self.with_conv:
            pad = (0, 1, 0, 1)  # pad height and width dim
            hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)
            hidden_states = self.conv(hidden_states)
        else:
            hidden_states = torch.nn.functional.avg_pool2d(hidden_states, kernel_size=2, stride=2)
        return hidden_states


class ResnetBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int = None,
        use_conv_shortcut: bool = False,
        dropout_prob: float = 0.0,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels
        self.use_conv_shortcut = use_conv_shortcut

        self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        self.conv1 = nn.Conv2d(
            self.in_channels,
            self.out_channels_,
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True)
        self.dropout = nn.Dropout(dropout_prob)
        self.conv2 = nn.Conv2d(
            self.out_channels_,
            self.out_channels_,
            kernel_size=3,
            stride=(1, 1),
            padding=1,
        )

        if self.in_channels != self.out_channels_:
            if use_conv_shortcut:
                self.conv_shortcut = nn.Conv2d(
                    self.in_channels,
                    self.out_channels_,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                )
            else:
                self.nin_shortcut = nn.Conv2d(
                    self.in_channels,
                    self.out_channels_,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                )

    def forward(self, hidden_states):
        residual = hidden_states
        hidden_states = self.norm1(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.in_channels != self.out_channels_:
            if self.use_conv_shortcut:
                residual = self.conv_shortcut(residual)
            else:
                residual = self.nin_shortcut(residual)

        return hidden_states + residual


class AttnBlock(nn.Module):
    def __init__(self, in_channels: int):
        super().__init__()

        self.in_channels = in_channels
        conv = partial(nn.Conv2d, self.in_channels, self.in_channels, kernel_size=1, stride=1, padding=0)

        self.norm = nn.GroupNorm(num_groups=32, num_channels=self.in_channels, eps=1e-6, affine=True)
        self.q, self.k, self.v = conv(), conv(), conv()
        self.proj_out = conv()

    def forward(self, hidden_states):
        residual = hidden_states
        hidden_states = self.norm(hidden_states)

        query = self.q(hidden_states)
        key = self.k(hidden_states)
        value = self.v(hidden_states)

        # compute attentions
        batch, channels, height, width = query.shape
        query = query.reshape((batch, channels, height * width))
        query = query.permute(0, 2, 1)  # (b, hw, c)
        key = key.reshape((batch, channels, height * width))

        attn_weights = torch.bmm(query, key)  # b,hw,hw
        attn_weights = attn_weights * (int(channels) ** -0.5)
        attn_weights = nn.functional.softmax(attn_weights, dim=2)

        # attend to values
        value = value.reshape((batch, channels, height * width))
        attn_weights = attn_weights.permute(0, 2, 1)
        hidden_states = torch.bmm(value, attn_weights)
        hidden_states = hidden_states.reshape((batch, channels, height, width))

        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states + residual
        return hidden_states


class UpsamplingBlock(nn.Module):
    def __init__(self, config, curr_res: int, block_idx: int):
        super().__init__()

        self.config = config
        self.block_idx = block_idx
        self.curr_res = curr_res

        if self.block_idx == self.config.num_resolutions - 1:
            block_in = self.config.hidden_channels * self.config.channel_mult[-1]
        else:
            block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1]

        block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]

        res_blocks = []
        attn_blocks = []
        for _ in range(self.config.num_res_blocks + 1):
            res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
            block_in = block_out
            if self.curr_res in self.config.attn_resolutions:
                attn_blocks.append(AttnBlock(block_in))

        self.block = nn.ModuleList(res_blocks)
        self.attn = nn.ModuleList(attn_blocks)

        self.upsample = None
        if self.block_idx != 0:
            self.upsample = Upsample(block_in, self.config.resample_with_conv)

    def forward(self, hidden_states):
        for i, res_block in enumerate(self.block):
            hidden_states = res_block(hidden_states)
            if len(self.attn) > 1:
                hidden_states = self.attn[i](hidden_states)

        if self.upsample is not None:
            hidden_states = self.upsample(hidden_states)

        return hidden_states


class DownsamplingBlock(nn.Module):
    def __init__(self, config, curr_res: int, block_idx: int):
        super().__init__()

        self.config = config
        self.curr_res = curr_res
        self.block_idx = block_idx

        in_channel_mult = (1,) + tuple(self.config.channel_mult)
        block_in = self.config.hidden_channels * in_channel_mult[self.block_idx]
        block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]

        res_blocks = nn.ModuleList()
        attn_blocks = nn.ModuleList()
        for _ in range(self.config.num_res_blocks):
            res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
            block_in = block_out
            if self.curr_res in self.config.attn_resolutions:
                attn_blocks.append(AttnBlock(block_in))

        self.block = res_blocks
        self.attn = attn_blocks

        self.downsample = None
        if self.block_idx != self.config.num_resolutions - 1:
            self.downsample = Downsample(block_in, self.config.resample_with_conv)

    def forward(self, hidden_states):
        for i, res_block in enumerate(self.block):
            hidden_states = res_block(hidden_states)
            if len(self.attn) > 1:
                hidden_states = self.attn[i](hidden_states)

        if self.downsample is not None:
            hidden_states = self.downsample(hidden_states)

        return hidden_states


class MidBlock(nn.Module):
    def __init__(self, config, in_channels: int, no_attn: False, dropout: float):
        super().__init__()

        self.config = config
        self.in_channels = in_channels
        self.no_attn = no_attn
        self.dropout = dropout

        self.block_1 = ResnetBlock(
            self.in_channels,
            self.in_channels,
            dropout_prob=self.dropout,
        )
        if not no_attn:
            self.attn_1 = AttnBlock(self.in_channels)
        self.block_2 = ResnetBlock(
            self.in_channels,
            self.in_channels,
            dropout_prob=self.dropout,
        )

    def forward(self, hidden_states):
        hidden_states = self.block_1(hidden_states)
        if not self.no_attn:
            hidden_states = self.attn_1(hidden_states)
        hidden_states = self.block_2(hidden_states)
        return hidden_states


class Encoder(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config

        # downsampling
        self.conv_in = nn.Conv2d(
            self.config.num_channels,
            self.config.hidden_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )

        curr_res = self.config.resolution
        downsample_blocks = []
        for i_level in range(self.config.num_resolutions):
            downsample_blocks.append(DownsamplingBlock(self.config, curr_res, block_idx=i_level))

            if i_level != self.config.num_resolutions - 1:
                curr_res = curr_res // 2
        self.down = nn.ModuleList(downsample_blocks)

        # middle
        mid_channels = self.config.hidden_channels * self.config.channel_mult[-1]
        self.mid = MidBlock(config, mid_channels, self.config.no_attn_mid_block, self.config.dropout)

        # end
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True)
        self.conv_out = nn.Conv2d(
            mid_channels,
            self.config.z_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )

    def forward(self, pixel_values):
        # downsampling
        hidden_states = self.conv_in(pixel_values)
        for block in self.down:
            hidden_states = block(hidden_states)

        # middle
        hidden_states = self.mid(hidden_states)

        # end
        hidden_states = self.norm_out(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        return hidden_states


class Decoder(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config

        # compute in_channel_mult, block_in and curr_res at lowest res
        block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1]
        curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
        self.z_shape = (1, self.config.z_channels, curr_res, curr_res)

        # z to block_in
        self.conv_in = nn.Conv2d(
            self.config.z_channels,
            block_in,
            kernel_size=3,
            stride=1,
            padding=1,
        )

        # middle
        self.mid = MidBlock(config, block_in, self.config.no_attn_mid_block, self.config.dropout)

        # upsampling
        upsample_blocks = []
        for i_level in reversed(range(self.config.num_resolutions)):
            upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level))
            if i_level != 0:
                curr_res = curr_res * 2
        self.up = nn.ModuleList(list(reversed(upsample_blocks)))  # reverse to get consistent order

        # end
        block_out = self.config.hidden_channels * self.config.channel_mult[0]
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True)
        self.conv_out = nn.Conv2d(
            block_out,
            self.config.num_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )

    def forward(self, hidden_states):
        # z to block_in
        hidden_states = self.conv_in(hidden_states)

        # middle
        hidden_states = self.mid(hidden_states)

        # upsampling
        for block in reversed(self.up):
            hidden_states = block(hidden_states)

        # end
        hidden_states = self.norm_out(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        return hidden_states


class VectorQuantizer(nn.Module):
    """
    see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
    Discretization bottleneck part of the VQ-VAE.
    """

    def __init__(self, num_embeddings, embedding_dim, commitment_cost):
        r"""
        Args:
            num_embeddings: number of vectors in the quantized space.
            embedding_dim: dimensionality of the tensors in the quantized space.
                Inputs to the modules must be in this format as well.
            commitment_cost: scalar which controls the weighting of the loss terms
                (see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta).
        """
        super().__init__()

        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.commitment_cost = commitment_cost

        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings)

    def forward(self, hidden_states, return_loss=False):
        """
        Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the
        closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width)
        quantization pipeline:
            1. get encoder input (B,C,H,W)
            2. flatten input to (B*H*W,C)
        """
        # reshape z -> (batch, height, width, channel) and flatten
        hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()

        distances = self.compute_distances(hidden_states)
        min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1)
        min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states)
        min_encodings.scatter_(1, min_encoding_indices, 1)

        # get quantized latent vectors
        z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape)

        # reshape to (batch, num_tokens)
        min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)

        # compute loss for embedding
        loss = None
        if return_loss:
            loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean(
                (z_q - hidden_states.detach()) ** 2
            )
            # preserve gradients
            z_q = hidden_states + (z_q - hidden_states).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q, min_encoding_indices, loss

    def compute_distances(self, hidden_states):
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim))
        emb_weights = self.embedding.weight.t()

        inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True)
        codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True)
        distances = torch.addmm(
            inputs_norm_sq + codebook_t_norm_sq,
            hidden_states_flattended,
            emb_weights,
            alpha=-2.0,
        )
        return distances

    def get_codebook_entry(self, indices):
        # indices are expected to be of shape (batch, num_tokens)
        # get quantized latent vectors
        batch, num_tokens = indices.shape
        z_q = self.embedding(indices)
        z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2)
        return z_q

    # adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372
    def get_soft_code(self, hidden_states, temp=1.0, stochastic=False):
        hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()  # (batch, height, width, channel)
        distances = self.compute_distances(hidden_states)  # (batch * height * width, num_embeddings)

        soft_code = F.softmax(-distances / temp, dim=-1)  # (batch * height * width, num_embeddings)
        if stochastic:
            code = torch.multinomial(soft_code, 1)  # (batch * height * width, 1)
        else:
            code = distances.argmin(dim=-1)  # (batch * height * width)

        code = code.reshape(hidden_states.shape[0], -1)  # (batch, height * width)
        batch, num_tokens = code.shape
        soft_code = soft_code.reshape(batch, num_tokens, -1)  # (batch, height * width, num_embeddings)
        return soft_code, code

    def get_code(self, hidden_states):
        # reshape z -> (batch, height, width, channel)
        hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
        distances = self.compute_distances(hidden_states)
        indices = torch.argmin(distances, axis=1).unsqueeze(1)
        indices = indices.reshape(hidden_states.shape[0], -1)
        return indices


class VQGANModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        resolution: int = 256,
        num_channels: int = 3,
        hidden_channels: int = 128,
        channel_mult: Tuple = (1, 1, 2, 2, 4),
        num_res_blocks: int = 2,
        attn_resolutions: int = (16,),
        no_attn_mid_block: bool = False,
        z_channels: int = 256,
        num_embeddings: int = 1024,
        quantized_embed_dim: int = 256,
        dropout: float = 0.0,
        resample_with_conv: bool = True,
        commitment_cost: float = 0.25,
    ):
        super().__init__()

        self.config.num_resolutions = len(channel_mult)
        self.config.reduction_factor = 2 ** (self.config.num_resolutions - 1)
        self.config.latent_size = resolution // self.config.reduction_factor

        self.encoder = Encoder(self.config)
        self.decoder = Decoder(self.config)
        self.quantize = VectorQuantizer(
            self.config.num_embeddings, self.config.quantized_embed_dim, self.config.commitment_cost
        )
        self.quant_conv = nn.Conv2d(
            self.config.z_channels,
            self.config.quantized_embed_dim,
            kernel_size=1,
        )
        self.post_quant_conv = nn.Conv2d(
            self.config.quantized_embed_dim,
            self.config.z_channels,
            kernel_size=1,
        )

    def encode(self, pixel_values, return_loss=False):
        hidden_states = self.encoder(pixel_values)
        hidden_states = self.quant_conv(hidden_states)
        quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states, return_loss)
        output = (quantized_states, codebook_indices)
        if return_loss:
            output = output + (codebook_loss,)
        return output

    def decode(self, quantized_states):
        hidden_states = self.post_quant_conv(quantized_states)
        reconstructed_pixel_values = self.decoder(hidden_states)
        return reconstructed_pixel_values

    def decode_code(self, codebook_indices):
        quantized_states = self.quantize.get_codebook_entry(codebook_indices)
        reconstructed_pixel_values = self.decode(quantized_states)
        return reconstructed_pixel_values

    def get_code(self, pixel_values):
        hidden_states = self.encoder(pixel_values)
        hidden_states = self.quant_conv(hidden_states)
        codebook_indices = self.quantize.get_code(hidden_states)
        return codebook_indices

    def forward(self, pixel_values, return_loss=False):
        hidden_states = self.encoder(pixel_values)
        hidden_states = self.quant_conv(hidden_states)
        quantized_states, codebook_indices, codebook_loss = self.quantize(hidden_states, return_loss)
        reconstructed_pixel_values = self.decode(quantized_states)
        outputs = (reconstructed_pixel_values, quantized_states, codebook_indices)
        if return_loss:
            outputs = outputs + (codebook_loss,)
        return outputs



def get_tokenizer_muse():

    ckpts_path = "Emma02/vqvae_ckpts"
    net = VQGANModel.from_pretrained(ckpts_path)

    return net