import cv2 from utils.detect import create_mtcnn_net, MtcnnDetector from utils.vision import vis_face import argparse MIN_FACE_SIZE = 3 def parse_args(): parser = argparse.ArgumentParser(description='Test MTCNN', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--net', default='onet', help='which net to show', type=str) parser.add_argument('--pnet_path', default="./model_store/pnet_epoch_20.pt",help='path to pnet model', type=str) parser.add_argument('--rnet_path', default="./model_store/rnet_epoch_20.pt",help='path to rnet model', type=str) parser.add_argument('--onet_path', default="./model_store/onet_epoch_20.pt",help='path to onet model', type=str) parser.add_argument('--path', default="./img/mid.png",help='path to image', type=str) parser.add_argument('--min_face_size', default=MIN_FACE_SIZE,help='min face size', type=int) parser.add_argument('--use_cuda', default=False,help='use cuda', type=bool) parser.add_argument('--thresh', default='[0.1, 0.1, 0.1]',help='thresh', type=str) parser.add_argument('--save_name', default="result.jpg",help='save name', type=str) parser.add_argument('--input_mode', default=1,help='image or video', type=int) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() thresh = [float(i) for i in (args.thresh).split('[')[1].split(']')[0].split(',')] pnet, rnet, onet = create_mtcnn_net(p_model_path=args.pnet_path, r_model_path=args.rnet_path,o_model_path=args.onet_path, use_cuda=args.use_cuda) mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, onet=onet, min_face_size=args.min_face_size,threshold=thresh) if args.input_mode == 1: img = cv2.imread(args.path) img_bg = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) p_bboxs, r_bboxs, bboxs, landmarks = mtcnn_detector.detect_face(img) # print box_align save_name = args.save_name if args.net == 'pnet': vis_face(img_bg, p_bboxs, landmarks, MIN_FACE_SIZE, save_name) elif args.net == 'rnet': vis_face(img_bg, r_bboxs, landmarks, MIN_FACE_SIZE, save_name) elif args.net == 'onet': vis_face(img_bg, bboxs, landmarks, MIN_FACE_SIZE, save_name) elif args.input_mode == 0: cap=cv2.VideoCapture(0) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('out.mp4' ,fourcc,10,(640,480)) while True: t1=cv2.getTickCount() ret,frame = cap.read() if ret == True: boxes_c,landmarks = mtcnn_detector.detect_face(frame) t2=cv2.getTickCount() t=(t2-t1)/cv2.getTickFrequency() fps=1.0/t for i in range(boxes_c.shape[0]): bbox = boxes_c[i, :4] score = boxes_c[i, 4] corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])] #画人脸框 cv2.rectangle(frame, (corpbbox[0], corpbbox[1]), (corpbbox[2], corpbbox[3]), (255, 0, 0), 1) #画置信度 cv2.putText(frame, '{:.2f}'.format(score), (corpbbox[0], corpbbox[1] - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 0, 255), 2) #画fps值 cv2.putText(frame, '{:.4f}'.format(t) + " " + '{:.3f}'.format(fps), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2) #画关键点 for i in range(landmarks.shape[0]): for j in range(len(landmarks[i])//2): cv2.circle(frame, (int(landmarks[i][2*j]),int(int(landmarks[i][2*j+1]))), 2, (0,0,255)) a = out.write(frame) cv2.imshow("result", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break cap.release() out.release() cv2.destroyAllWindows()