import csv import warnings import io import pathlib from typing import Union import os import random from PIL import Image # import whisper import openai import gradio as gr from transformers import pipeline from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation from pytube import YouTube from pytube import Search from serpapi import GoogleSearch import grpc from langchain.embeddings.openai import OpenAIEmbeddings from PyPDF2 import PdfReader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from langchain.agents import create_pandas_dataframe_agent import pandas as pd import docx from pandasai import PandasAI from pandasai.llm.openai import OpenAI as pai_openai openai.api_key = os.environ['OPENAI_API_KEY'] stability_api = client.StabilityInference( key=os.environ['STABILITY_KEY'], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference. verbose=True, # Print debug messages. engine="stable-diffusion-v1-5", # Set the engine to use for generation. # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 # stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0 ) whisper_from_pipeline = pipeline("automatic-speech-recognition",model="openai/whisper-medium") EMBEDIDNGS = None DATAFRAME_FILE = None DATAFRAME = None DOCSEARCH = None RANDOM_USER = ''.join(chr(random.randint(65,90)) for i in range(8))+f'{random.randint(1,10000000000)}' print(f'{RANDOM_USER} chat started') ############# FUNCTION DEPENDING ON IPYTHON FUNCTIONS FROM OPENAI RESPONSE def gen_draw(user_query:str)->tuple: ###USES STABLE DIFFUSION answers = stability_api.generate( prompt = user_query, seed=992446758, # If a seed is provided, the resulting generated image will be deterministic. # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again. # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook. steps=30, # Amount of inference steps performed on image generation. Defaults to 30. cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt. # Setting this value higher increases the strength in which it tries to match your prompt. # Defaults to 7.0 if not specified. width=512, # Generation width, defaults to 512 if not included. height=512, # Generation height, defaults to 512 if not included. samples=1, # Number of images to generate, defaults to 1 if not included. sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with. # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers. # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m) ) try: for resp in answers: for artifact in resp.artifacts: if artifact.finish_reason == generation.FILTER: warnings.warn( "Your request activated the API's safety filters and could not be processed." "Please modify the prompt and try again.") if artifact.type == generation.ARTIFACT_IMAGE: img = Image.open(io.BytesIO(artifact.binary)) image_file = f'/tmp/{artifact.seed}.png' img.save(image_file) return (image_file,) except grpc._channel._MultiThreadedRendezvous as e: print(f'Exception : {e.__class__}') print(e) return "Invalid prompt" def vid_tube(user_query:str) -> tuple: video_id = Search(user_query).results[0].video_id return f'' # first_video = py_tube_list_of_videos.results[0] # yt_flag = False # for vid in py_tube_list_of_videos.results: # print(vid.vid_info.keys()) # if vid.vid_info.get('streamingData'): # print(vid.vid_info.keys(),'-') # yt_flag = True # file_path = vid.streams.get_highest_resolution().download('/tmp/') # break return (file_path,) if yt_flag else "The system cannot fulfill your request currently please try later" def search_internet(user_query:str,*,key_number:int) -> str: if key_number >= 9: raise gr.Error("Out of Google API Keys") try: params = { "q": user_query, "location": "Bengaluru, Karnataka, India", "hl": "hi", "gl": "in", "google_domain": "google.co.in", # "api_key": "" "api_key": os.environ[f'GOOGLE_API{key_number}'] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] } search = GoogleSearch(params) results = search.get_dict() print(results) organic_results = results["organic_results"] print(f"Key {key_number} used") snippets = "" counter = 1 for item in organic_results: snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['link'] + '\n' counter += 1 # snippets response = openai.Completion.create( model="text-davinci-003", prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print reference link as well followed by answer. \n\n {snippets}\n\n question-{user_query}\n\nAnswer-''', temperature=0.49, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0) result = response.choices[0].text except Exception as e: print(f'search google: ') print(f'GOOGLE_API{key_number} OUT OF LIMIT!') print(f'Exception: {e.__class__}, {e}') return search_internet(user_query,key_number = key_number+1) return result def search_document_uploaded(user_query:str) -> str: print('Searching uploaded document......') # docsearch = FAISS.load_local(folder_path = f'/tmp/{RANDOM_USER}embeddings',embeddings=EMBEDIDNGS) chain = load_qa_chain(OpenAI(), chain_type="stuff") docs = DOCSEARCH.similarity_search(user_query) return chain.run(input_documents=docs, question=user_query) def ask_dataframes(user_query): return DATAFRAME_FILE.run(DATAFRAME, prompt = user_query) ############# GET OPENAI RESPONSE def get_open_ai_reponse(user_query:str)->Union[tuple,str]: print(EMBEDIDNGS) if (EMBEDIDNGS is not None) and (DOCSEARCH is not None): print('Searching document') return search_document_uploaded(user_query) if DATAFRAME_FILE is not None: print('Dataframe') return ask_dataframes(user_query) open_ai_response = openai.Completion.create( model="text-davinci-003", prompt=f'''Your name is GenZBot and knowledge cutoff date is 2021-09, and you are not aware of any events after that time. if the Answer to following questions is not from your knowledge base or in case of queries like date, time, weather updates / stock updates / current affairs / news or people which requires you to have internet connection then print i don't have access to internet to answer your question, if question is related to image or painting or drawing or diagram generation then print ipython type output function gen_draw("detailed prompt of image to be generated") if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query") if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") . if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)") \nQuestion-{user_query} \nAnswer -''', temperature=0.49, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0 ) result_from_open_ai = open_ai_response.choices[0].text if 'gen_draw' in result_from_open_ai: result = gen_draw(user_query) ## will write drawn image to file elif 'vid_tube' in result_from_open_ai: try: result = vid_tube(user_query) ## play youtube video except KeyError as e: print(e) result = "The system is spacing an issue please try again later" elif ("don't" in result_from_open_ai) or ("internet" in result_from_open_ai): result = search_internet(user_query,key_number = 1) else: result = result_from_open_ai return result ############### DIFFERENT OUTPUT FUNCTIONS def user_input(chat_history:list,user_query:str)->list: result = get_open_ai_reponse(user_query) print(f'user_input: {chat_history + [(user_query,result)]}') return chat_history + [(user_query,result)] def transcribe(chat_history:list,user_audio_query:str)->list: print(user_audio_query.__class__) # text_from_speech = p(user_audio_query)["text"] try: user_query_from_audio = whisper_from_pipeline(user_audio_query)["text"] except Exception as e: print('EXCEPTION AS E') result = f'We are having a problem : {e}' else: result = get_open_ai_reponse(user_query_from_audio) # user_query_from_audio if user_query_from_audio else result print(result) print(f'transcribe: {chat_history + [(user_query_from_audio,result)]}') return chat_history + [(user_query_from_audio,result)] def pdf(file_name): print(f'Processing {file_name} pdf file') reader = PdfReader(file_name) raw_text = '' for i, page in enumerate(reader.pages): text = page.extract_text() if text: raw_text += text text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.split_text(raw_text) return texts def docx_file(file_name): print(f'Processing .docx file: {file_name}') doc = docx.Document(file_name) # iterate over paragraphs and print their text raw_text = '' for para in doc.paragraphs: raw_text += para.text text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.split_text(raw_text) return texts def text_file(file_name): print('Processing text file') with open(file_name) as file: raw_text = '' for line in file: raw_text += line text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.split_text(raw_text) return texts def build_embeddings(file_name,file_ext): functions_by_file_type = { 'pdf': pdf, 'docx': docx_file, 'txt': text_file } texts = functions_by_file_type.get(file_ext.replace('.','').strip())(file_name) print(texts) global EMBEDIDNGS EMBEDIDNGS = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY']) global DOCSEARCH DOCSEARCH = FAISS.from_texts(texts, EMBEDIDNGS) # if not os.path.exists(f'/tmp/{RANDOM_USER}embeddings'): # os.mkdir(f'/tmp/{RANDOM_USER}embeddings') # docsearch.save_local(f'/tmp/{RANDOM_USER}embeddings') # print(f'Embeddings created to /tmp/{RANDOM_USER}embeddings') def ask_questions_abt_dataframes(file,file_ext): print(file_ext) global EMBEDIDNGS EMBEDIDNGS = None reader_function = { '.csv': pd.read_csv, '.xlsx': pd.read_excel }.get(file_ext) print(reader_function.__name__) global DATAFRAME_FILE global DATAFRAME DATAFRAME = reader_function(file.name) llm = pai_openai(api_token=os.environ['OPENAI_API_KEY']) DATAFRAME_FILE = PandasAI(llm) def upload_file(chatbot_history,file_uploaded): file_ext = os.path.splitext(file_uploaded.name)[-1] if file_ext not in ['.csv','.docx','.xlsx','.pdf','.txt']: return chatbot_history + [(None, 'Invalid file format. We currently only csv, docx, pdf, txt, xlsx file extensions.')] print(file_uploaded.__class__) if file_ext not in ['.csv','.xlsx']: build_embeddings(file_uploaded.name,file_ext) else: try: ask_questions_abt_dataframes(file_uploaded,file_ext) except Exception as e: print(f'Dataframes {e}') return chatbot_history + [(None, f'Kindly attempt again at a subsequent time.')] return chatbot_history + [(None, f'You have uploaded {os.path.split(file_uploaded.name)[-1]} successfully. You can start asking questions about the document.If you want to stop asking questions about the uploaded document click on "clear chat history".')] def clear_chat_history(history:list)->list: history.clear() global EMBEDIDNGS EMBEDIDNGS = None global DATAFRAME_FILE DATAFRAME_FILE = None global DOCSEARCH DOCSEARCH = None # storing_folder = pathlib.Path('/tmp/') # for file in storing_folder.iterdir(): # if file.is_file(): # print(f'{file} to be deleted') # file.unlink() # print(f'{file} deleted') # global EMBEDIDNGS # EMBEDIDNGS = None # global DATAFRAME_FILE # DATAFRAME_FILE = None return history #################### DRIVER SCRIPT ##################### with gr.Blocks(theme='freddyaboulton/test-blue') as demo: gr.Markdown(gr.__version__) gr.Markdown("""