Spaces:
Runtime error
Runtime error
File size: 10,472 Bytes
0711b9c d1d6dec 0711b9c 287f012 52668e2 0711b9c 52668e2 0711b9c 52668e2 0711b9c d1d6dec 0711b9c d1d6dec 0711b9c 2fd1f9d 0711b9c d1d6dec 0711b9c 2700728 1d6e1ff 2700728 0711b9c 2700728 0711b9c 2700728 0711b9c 2700728 0711b9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import torch
import transformers
from transformers import GenerationConfig, pipeline, AutoTokenizer, AutoModelForCausalLM, EsmForProteinFolding
import os
import tempfile
import subprocess
import pandas as pd
import numpy as np
import gradio as gr
from time import time
import requests
model_id = "Esperanto/Protein-Phi-3-mini"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
#Creating the pipeline for generation
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# Loading the ESM Model
esm_model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
esm_tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
#Ensures that final output contains only valid amino acids
def clean_protein_sequence(protein_seq):
# Valid amino acid characters
valid_amino_acids = "ACDEFGHIKLMNPQRSTVWY"
# Filter out any characters that are not valid amino acids
cleaned_seq = ''.join([char for char in protein_seq if char in valid_amino_acids])
return cleaned_seq
#convert pLDDT to percentage
def modify_b_factors(pdb_content, multiplier):
modified_pdb = []
for line in pdb_content.split('\n'):
if line.startswith("ATOM"):
b_factor = float(line[60:66].strip())
new_b_factor = b_factor * multiplier
new_line = f"{line[:60]}{new_b_factor:6.2f}{line[66:]}"
modified_pdb.append(new_line)
else:
modified_pdb.append(line)
return "\n".join(modified_pdb)
#saves the structure output from ESMFold as a PDB file in a temporary folder
def save_pdb(input_sequence):
inputs = esm_tokenizer([input_sequence], return_tensors="pt", add_special_tokens=False)
with torch.no_grad():
outputs = esm_model(**inputs)
pdb_string_unscaled = esm_model.output_to_pdb(outputs)[0]
pdb_string = modify_b_factors(pdb_string_unscaled, 100)
plddt_values = outputs.plddt.tolist()[0][0]
plddt_values = [round(value * 100, 2) for value in plddt_values]
file_path = os.path.join('Protein-Llama-3-8B-Gradio/temporary_folder', f"protein.pdb")
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as f:
f.write(pdb_string)
return np.mean(plddt_values)
#reads the PDB file
def read_prot(molpath):
with open(molpath, "r") as fp:
lines = fp.readlines()
mol = ""
for l in lines:
mol += l
return mol
def get_cov2_pdb():
pdb_id = '6vxx'
url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
# Fetch the PDB file from the RCSB PDB website
response = requests.get(url)
# Check if the request was successful
mol = response.text
return mol
def protein_visual_html(input_pdb):
if input_pdb == 'cov2':
mol = get_cov2_pdb()
else:
mol = read_prot(input_pdb)
x = (
"""<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<style>
body{
font-family:sans-serif
}
.mol-container {
width: 100%;
height: 600px;
position: relative;
}
.mol-container select{
background-image:None;
}
</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<script>
let pdb = `""" + mol + """`
$(document).ready(function () {
let element = $("#container");
let config = { backgroundColor: "white" };
let viewer = $3Dmol.createViewer(element, config);
viewer.addModel(pdb, "pdb");
viewer.getModel(0).setStyle({}, { cartoon: { color:"spectrum" } });
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
})
</script>
</body></html>"""
)
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def predict_structure(input_sequence):
#Hard coding the SARS-CoV 2 protein sequence and structure for instant demo purposes
if input_sequence == 'SNASADAQSFLNRVCGVSAARLTPCGTGTSTDVVYRAFDIYNDKVAGFAKFLKTNCCRFQEKDEDDNLIDSYFVVKRHTFSNYQHEETIYNLLKDCPAVAKHDFFKFRIDGDMVPHISRQRLTKYTMADLVYALRHFDEGNCDTLKEILVTYNCCDDDYFNKKDWYDFVENPDILRVYANLGERVRQALLKTVQFCDAMRNAGIVGVLTLDNQDLNGNWYDFGDFIQTTPGSGVPVVDSYYSLLMPILTLTRALTAESHVDTDLTKPYIKWDLLKYDFTEERLKLFDRYFKYWDQTYHPNCVNCLDDRCILHCANFNVLFSTVFPPTSFGPLVRKIFVDGVPFVVSTGYHFRELGVVHNQDVNLHSSRLSFKELLVYAADPAMHAASGNLLLDKRTTCFSVAALTNNVAFQTVKPGNFNKDFYDFAVSKGFFKEGSSVELKHFFFAQDGNAAISDYDYYRYNLPTMCDIRQLLFVVEVVDKYFDCYDGGCINANQVI':
return protein_visual_html('Protein-Llama-3-8B-Gradio/sars_cov.pdb')
else:
plddt = save_pdb(input_sequence)
#Creating HTML visualization for the PDB file stores in temporary folder
pdb_path = 'cov2'
return protein_visual_html(pdb_path)
def generate_protein_sequence(sequence, seq_length, property=''):
enzymes = ["Non-Hemolytic", "Soluble", "Oxidoreductase", "Transferase", "Hydrolase", "Lyase", "Isomerase", "Ligase", "Translocase"]
start_time = time()
if property is None:
input_prompt = 'Seq=<' + sequence
elif property == 'SARS-CoV-2 Spike Protein (example)':
cleaned_seq = 'SNASADAQSFLNRVCGVSAARLTPCGTGTSTDVVYRAFDIYNDKVAGFAKFLKTNCCRFQEKDEDDNLIDSYFVVKRHTFSNYQHEETIYNLLKDCPAVAKHDFFKFRIDGDMVPHISRQRLTKYTMADLVYALRHFDEGNCDTLKEILVTYNCCDDDYFNKKDWYDFVENPDILRVYANLGERVRQALLKTVQFCDAMRNAGIVGVLTLDNQDLNGNWYDFGDFIQTTPGSGVPVVDSYYSLLMPILTLTRALTAESHVDTDLTKPYIKWDLLKYDFTEERLKLFDRYFKYWDQTYHPNCVNCLDDRCILHCANFNVLFSTVFPPTSFGPLVRKIFVDGVPFVVSTGYHFRELGVVHNQDVNLHSSRLSFKELLVYAADPAMHAASGNLLLDKRTTCFSVAALTNNVAFQTVKPGNFNKDFYDFAVSKGFFKEGSSVELKHFFFAQDGNAAISDYDYYRYNLPTMCDIRQLLFVVEVVDKYFDCYDGGCINANQVI'
end_time = time()
max_memory_used = 0
return cleaned_seq, end_time - start_time, max_memory_used, 0
elif property in enzymes:
input_prompt = '[Generate ' + property.lower() + ' protein] ' + 'Seq=<' + sequence
else:
input_prompt = '[Generate ' + property + ' protein] ' + 'Seq=<' + sequence
start_time = time()
protein_seq = generator(input_prompt, temperature=0.5,
top_k=40,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2,
max_new_tokens=seq_length,
num_return_sequences=1)[0]["generated_text"]
end_time = time()
start_idx = protein_seq.find('Seq=<')
end_idx = protein_seq.find('>', start_idx)
protein_seq = protein_seq[start_idx:end_idx]
cleaned_seq = clean_protein_sequence(protein_seq)
tokens = tokenizer.encode(cleaned_seq, add_special_tokens=False)
tokens_per_second = len(tokens) / (end_time - start_time)
return cleaned_seq, end_time - start_time, tokens_per_second
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown('''
### Interactive protein sequence generation and visualization.
Generating novel protein sequences possessing desired properties, termed as protein engineering, is crucial for industries like drug development and chemical synthesis.
This model supports two types of generation, uncontrollable and controllable. Uncontrollable generation refers to generating any viable protein sequence, whereas controllable refers to generating proteins having a desired property or a characteristic.
### Usage
For uncontrollable generation, input any starting amino acids and press 'Submit' without choosing a property. For controllable generation, choose any of the ten properties supported by this model before pressing 'Submit'. The important inference metrics will be displayed along with the generated output.
### Example
As an example, the protein sequence corresponding to the SARS-CoV-2 Spike Protein is given. This example does not run inference on the model as the sequence is hard-coded, however it showcases the flow of interacting with the demo.
''')
with gr.Row():
input_text = gr.Textbox(label="Enter starting amino acids for protein sequence generation", placeholder="Example input: MK")
with gr.Row():
seq_length = gr.Slider(2, 200, value=30, step=1, label="Length", info="Choose the number of tokens to generate")
classes = ["SARS-CoV-2 Spike Protein (example)", 'Tetratricopeptide-like helical domain superfamily', 'CheY-like superfamily', 'S-adenosyl-L-methionine-dependent methyltransferase superfamily', 'Thioredoxin-like superfamily', "Non-Hemolytic" ,"Soluble", "Oxidoreductase", "Transferase", "Hydrolase", "Lyase", "Isomerase", "Ligase", "Translocase"]
protein_property = gr.Dropdown(classes, label="Class")
with gr.Row():
btn = gr.Button("Submit")
with gr.Row():
output_text = gr.Textbox(label="Generated protein sequence will appear here")
with gr.Row():
infer_time = gr.Number(label="Inference Time (s)", precision=2)
tokens_per_sec = gr.Number(label="Tokens/sec", precision=2)
# with gr.Row():
# btn_vis = gr.Button("Visualize")
# with gr.Row():
# structure_visual = gr.HTML()
btn.click(generate_protein_sequence, inputs=[input_text, seq_length, protein_property], outputs=[output_text, infer_time, tokens_per_sec])
# btn_vis.click(predict_structure, inputs=output_text, outputs=[structure_visual])
# Run the Gradio interface
demo.launch() |