import albumentations import cv2 import torch import timm import gradio as gr import numpy as np import os import random device = torch.device('cpu') labels = { 0: 'bacterial_leaf_blight', 1: 'bacterial_leaf_streak', 2: 'bacterial_panicle_blight', 3: 'blast', 4: 'brown_spot', 5: 'dead_heart', 6: 'downy_mildew', 7: 'hispa', 8: 'normal', 9: 'tungro' } def inference_fn(model, image=None): model.eval() image = image.to(device) with torch.no_grad(): output = model(image.unsqueeze(0)) out = output.sigmoid().detach().cpu().numpy().flatten() return out def predict(image=None) -> dict: mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) augmentations = albumentations.Compose( [ albumentations.Resize(256, 256), albumentations.HorizontalFlip(p=0.5), albumentations.VerticalFlip(p=0.5), albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True), ] ) augmented = augmentations(image=image) image = augmented["image"] image = np.transpose(image, (2, 0, 1)) image = torch.tensor(image, dtype=torch.float32) model = timm.create_model('efficientnet_b0', pretrained=False, num_classes=10) model.load_state_dict(torch.load("paddy_model.pth", map_location=torch.device(device))) model.to(device) predicted = inference_fn(model, image) return {labels[i]: float(predicted[i]) for i in range(10)} gr.Interface(fn=predict, inputs=gr.inputs.Image(), outputs=gr.outputs.Label(num_top_classes=10), examples=["200005.jpg", "200006.jpg"], interpretation='default').launch()