ysharma's picture
ysharma HF staff
update
c3d5815
raw
history blame
5.25 kB
import gradio as gr
import requests
import os
##Bloom
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
#Testing various prompts initially
prompt1 = """
word: risk
poem using word: And then the day came,
when the risk
to remain tight
in a bud
was more painful
than the risk
it took
to blossom.
word: """
prompt2 = """
Q: Joy has 5 balls. He buys 2 more cans of balls. Each can has 3 balls. How many balls he has now?
A: Joy had 5 balls. 2 cans of 3 balls each is 6 balls. 5 + 6 = 11. Answer is 11.
Q: Jane has 16 balls. Half balls are golf balls, and half golf balls are red. How many red golf balls are there?
A: """
prompt3 = """Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: Let’s think step by step.
"""
def text_generate(problem, template, prompt):
#prints to debug
print(f"*****Inside text_generate function******")
print(f"Problem is :{problem}")
print(f"Template is :{template}")
print(f"Prompt is :{prompt}")
if len(problem) == 0 and len(template) == 0:
p = prompt
else:
p = problem + "A: " + template #+ "\n"
print(f"Final prompt is : {p}")
json_ = {"inputs": p,
"parameters":
{
"top_p": 0.9,
"temperature": 1.1,
"max_new_tokens": 250,
"return_full_text": True
}}
response = requests.post(API_URL, headers=headers, json=json_)
print(f"Response is : {response}")
output = response.json()
print(f"output is : {output}") #{output}")
output_tmp = output[0]['generated_text']
print(f"output_tmp is: {output_tmp}")
solution = output_tmp.split("\nQ:")[0] #output[0]['generated_text'].split("Q:")[0] # +"."
print(f"Final response after splits is: {solution}")
return solution
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Step By Step With Bloom</center></h1>")
gr.Markdown(
""" APOLOGIES WIP FIXING SOMETHING. [BigScienceW Bloom](https://twitter.com/BigscienceW) \n\n Large language models have demonstrated a capability of 'Chain-of-thought reasoning'. A group of amazing researchers( [Jason Wei et al.](https://arxiv.org/abs/2205.11916)) recently found out that by adding **Lets think step by step** it improves the model's zero-shot performance. Some might say — You can get good results out of LLMs if you know how to speak to them. This space is an attempt at inspecting this LLM behavior/capability in the new HuggingFace BigScienceW [Bloom](https://huggingface.co/bigscience/bloom) model. \n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for EuroPython 2022 Demo.\nThis Space might sometime fail due to inference queue being full and logs would end up showing error as *queue full, try again later*, don't despair and try again after some time. I would try and improve the app as well over next couple days."""
)
with gr.Row():
#example_prompt = gr.Radio( ["Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?\nA: Let’s think step by step.\n", "Q: Roger has 5 tennis balls already. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\nA: Let’s think step by step.\n", "Q: On an average Joe throws 25 punches per minute. His fight lasts 5 rounds of 3 minutes each. How many punches did he throw?\nA: Let’s think about this logically.\n"], label= "Choose a sample Prompt")
example_problem = gr.Radio( ["Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?\n", "Q: Roger has 5 tennis balls already. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\n", "Q: On an average Joe throws 25 punches per minute. His fight lasts 5 rounds of 3 minutes each. How many punches did he throw?\n"], label= "Choose a sample Problem and corresponding Tempplate for Zero-Shot CoT:")
example_template = gr.Radio( ["Let’s think step by step.\n"," First, ", " Let’s think about this logically.\n", "Let’s solve this problem by splitting it into steps.\n", " Let’s be realistic and think step by step.\n", "Let’s think like a detective step by step.\n", "Let’s think ", "Before we dive into the answer, ", "The answer is after the proof.\n"], label= "Choose a sample Problem and corresponding Template for Zero-Shot CoT:")
generated_txt = gr.Textbox(lines=10)
with gr.Row():
input_prompt = gr.Textbox(placeholder="Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?\nA: Let’s think step by step.\n", label="Or don't select from above examples and just enter your own prompt drawing from the above examples and submit... ")
b1 = gr.Button("Generate Text")
b1.click(text_generate,inputs=[example_problem, example_template, input_prompt], outputs=generated_txt) #example_prompt
demo.launch(enable_queue=True, debug=True)