ysharma's picture
ysharma HF staff
updated max tokens
1aa27f8
raw
history blame
4.26 kB
import gradio as gr
import requests
import os
##Bloom Inference API
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def text_generate(prompt, generated_txt):
#Prints to debug the code
print(f"*****Inside text_generate - Prompt is :{prompt}")
json_ = {"inputs": prompt,
"parameters":
{
"top_p": 0.9,
"temperature": 1.1,
#"max_new_tokens": 64,
"return_full_text": True,
"do_sample":True,
},
"options":
{"use_cache": True,
"wait_for_model": True,
},}
response = requests.post(API_URL, headers=headers, json=json_)
print(f"Response is : {response}")
output = response.json()
print(f"output is : {output}")
output_tmp = output[0]['generated_text']
print(f"output_tmp is: {output_tmp}")
solution = output_tmp.split("\nQ:")[0]
print(f"Final response after splits is: {solution}")
if '\nOutput:' in solution:
final_solution = solution.split("\nOutput:")[0]
print(f"Response after removing output is: {final_solution}")
elif '\n\n' in solution:
final_solution = solution.split("\n\n")[0]
print(f"Response after removing new line entries is: {final_solution}")
else:
final_solution = solution
if len(generated_txt) == 0 :
display_output = final_solution
else:
display_output = generated_txt[:-len(prompt)] + final_solution
new_prompt = final_solution[len(prompt):]
print(f"new prompt for next cycle is : {new_prompt}")
print(f"display_output for printing on screen is : {display_output}")
if len(new_prompt) == 0:
temp_text = display_output[::-1]
print(f"What is the last character of sentence? : {temp_text[0]}")
if temp_text[1] == '.':
first_period_loc = temp_text[2:].find('.') + 1
print(f"Location of last Period is: {first_period_loc}")
new_prompt = display_output[-first_period_loc:-1]
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}")
else:
print("HERE")
first_period_loc = temp_text.find('.')
print(f"Location of last Period is : {first_period_loc}")
new_prompt = display_output[-first_period_loc:-1]
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}")
display_output = display_output[:-1]
return display_output, new_prompt
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Write Stories Using Bloom</center></h1>")
gr.Markdown(
"""Bloom is a model by [HuggingFace](https://huggingface.co/bigscience/bloom) and a team of more than 1000 researchers coming together as [BigScienceW Bloom](https://twitter.com/BigscienceW).\n\nLarge language models have demonstrated a capability of producing coherent sentences and given a context we can pretty much decide the *theme* of generated text.\n\nHow to Use this App: Use the sample text given as prompt or type in a new prompt as a starting point of your awesome story! Just keep pressing the 'Generate Text' Button and go crazy!\n\nHow this App works: This app operates by feeding back the text generated by Bloom to itself as a Prompt for next generation round and so on. Currently, due to size-limits on Prompt and Token generation, we are only able to feed very limited-length text as Prompt and are getting very few tokens generated in-turn. This makes it difficult to keep a tab on theme of text generation, so please bear with that. In summary, I believe it is a nice little fun App which you can play with for a while.\n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for EuroPython 2022 Demo."""
)
with gr.Row():
input_prompt = gr.Textbox(label="Write some text to get started...", lines=3, value="Dear human philosophers, I read your comments on my abilities and limitations with great interest.")
with gr.Row():
generated_txt = gr.Textbox(lines=7, visible = True)
b1 = gr.Button("Generate Your Story")
b1.click(text_generate, inputs=[input_prompt, generated_txt], outputs=[generated_txt, input_prompt])
demo.launch(enable_queue=True, debug=True)