File size: 10,441 Bytes
c4ebaf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import random
import time
import pickle
import math
from argparse import ArgumentParser

from typing import Iterable, List, Optional, Tuple

from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelWithLMHead
from torch import Tensor

from fudge.data import Dataset
from fudge.model import Model
from fudge.util import num_params
from fudge.constants import *



tokenizer = AutoTokenizer.from_pretrained('google/pegasus-xsum')
classifier_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')


def main(args):
    with open(args.dataset_info, 'rb') as rf:
        dataset_info = pickle.load(rf)

    article_content = """Australian actor Guy Pearce will return for the iconic soap Neighbours finale on August 1 to reprise his role as Mike Young.
                    Guy, 54, played the troubled Mike from 1986 to 1989, and is now set to make a comeback on the show after 33 years, Metro.co.uk reports.
                    The star's character arcs explored the implications of domestic abuse, student-teacher relationships and dealing with loss of loved ones.
                    Speaking to Metro.co.uk, Guy said: 'It is very exciting and surreal at the same time being back on set again, however it feels like coming home.
                    'It's where it all started for me professionally. I've been asked to come back on occasions over the years and wondered if it was the right thing 
                    to do, but once I knew the show was finishing, I knew I had to do it.'He added that there is 'nothing like being here all together again'
                    , even though he's had a chance to catch-up with other cast members."""

    tokenizer.add_special_tokens({'pad_token': PAD_TOKEN})
    pad_id = tokenizer.encode(PAD_TOKEN)[0]

    #For loading Clickbait summarizer
    model = AutoModelWithLMHead.from_pretrained(args.model_string, return_dict=True).to(args.device)
    
    model.eval()

    checkpoint = torch.load(args.ckpt, map_location=args.device)
    model_args = checkpoint['args']
    conditioning_model = Model(model_args, pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
    conditioning_model.load_state_dict(checkpoint['state_dict'])
    conditioning_model = conditioning_model.to(args.device)
    conditioning_model.eval()
    print("=> loaded checkpoint '{}' (epoch {})"
            .format(args.ckpt, checkpoint['epoch']))
    print('num params', num_params(conditioning_model))

    while True:
        results = generate_clickbait(model, 
                        tokenizer, 
                        conditioning_model, 
                        [args.input_text], 
                        dataset_info, 
                        precondition_topk=args.precondition_topk,
                        do_sample=args.do_sample,
                        length_cutoff=args.length_cutoff,
                        condition_lambda=args.condition_lambda,
                        article_content=article_content,
                        device=args.device)
        # print(results)
        import pdb; pdb.set_trace()


def generate_clickbait(model, 
                        tokenizer, 
                        conditioning_model, 
                        input_text, 
                        dataset_info, 
                        precondition_topk, 
                        length_cutoff, 
                        condition_lambda=1.0, 
                        article_content=None,
                        device='cuda'):
    with torch.no_grad():
        batch_size = len(input_text)
        # encoded_input_article = [tokenizer.encode(article_content, return_tensors='pt',add_special_tokens=False).to(device)] # batch x seq
        max_input_length = 512
        encoded_input_article = tokenizer(article_content, return_tensors='pt',add_special_tokens=False, max_length = max_input_length).to(device) # batch x seq
        # encoded_input_article = torch.cat(encoded_input_article, dim=0)
        # attention_mask = encoded_input_article.new_ones(encoded_input_article.shape).to(device)

        # CHANGE=ko
        encoded_input = tokenizer('<pad>', return_tensors='pt',add_special_tokens=False).to(device) # batch x seq
        # encoded_input = tokenizer('<pad>'+ input_text[0], return_tensors='pt',add_special_tokens=False).to(device) # batch x seq
        # encoded_input = torch.cat(encoded_input, dim=0)
        encoded_input = encoded_input['input_ids']


        lengths = torch.LongTensor([encoded_input.shape[1]]).to(device)
        # lengths = 1

        past = None
        use_cache = True

        # CHANGE
        # model_kwargs = {'encoder_outputs': model.get_encoder()(encoded_input_article, attention_mask=attention_mask)}
        model_kwargs = {'encoder_outputs': model.get_encoder()(input_ids=encoded_input_article['input_ids'], 
                                                            attention_mask=encoded_input_article['attention_mask'],
                                                            return_dict=True,
                                                            output_attentions=False,
                                                            output_hidden_states=False),
                        }

        while lengths.max() < length_cutoff:
            model_inputs = model.prepare_inputs_for_generation(
                input_ids = encoded_input_article['input_ids'], 
                decoder_input_ids=encoded_input, 
                # past=past, 
                attention_mask=encoded_input_article['attention_mask'],
                use_cache=use_cache, 
                **model_kwargs
            )

            outputs = model(**model_inputs, return_dict=True)
            logits = outputs.logits[:, -1, :]

            if "past_key_values" in outputs:
                model_kwargs["past"] = outputs.past_key_values

            # logits = model(encoded_input)[0][:, -1, :] # batch x vocab
            top_logits, top_indices = logits.topk(precondition_topk, dim=1) # batch x topk
            new_input_candidates = torch.cat([encoded_input.unsqueeze(1).expand(-1, precondition_topk, -1), top_indices.unsqueeze(2)], dim=2) # batch x topk x seq+1
            expanded_lengths = (lengths + 1).unsqueeze(1).expand(batch_size, precondition_topk) # batch x topk

            if condition_lambda == 0:
                condition_logits = torch.zeros_like(top_logits).float()
                condition_logits = condition_logits.view(batch_size, precondition_topk, -1) # batch x topk x N
            else:
                decoded_outputs = tokenizer.batch_decode(new_input_candidates.view(-1, new_input_candidates.size(-1)), clean_up_tokenization_spaces=False)
                resulting_tokenization = classifier_tokenizer(decoded_outputs, add_special_tokens=False, padding='longest')
                encoded_with_classifier = resulting_tokenization['input_ids']
                attention_mask = torch.tensor(resulting_tokenization['attention_mask']).to(model.device)
                tplus1_candidates_classifier = torch.tensor(encoded_with_classifier).view(batch_size, precondition_topk, -1).to(model.device)

                condition_logits = conditioning_model(tplus1_candidates_classifier.flatten(0, 1), # batch*topk x seq+1
                                                    expanded_lengths.flatten(0, 1), # batch*topk
                                                    None,
                                                    None,
                                                    None,
                                                    attention_mask=attention_mask
                )
                condition_logits = condition_logits.view(batch_size, precondition_topk, -1) # batch x topk x N
                condition_logits = condition_logits - torch.log(1 + torch.exp(condition_logits)) # get correct log probs

            condition_logits = torch.mean(condition_logits, dim=2)
            full_logits = top_logits + condition_logits * condition_lambda # batch x topk
            post_logits, post_indices = full_logits.topk(precondition_topk, dim=1)
            post_probs = F.softmax(post_logits, dim=1)
            # index_into_top_indices = post_indices[torch.arange(batch_size).to(post_indices.device), torch.multinomial(post_probs, 1).flatten()] # batch
            index_into_top_indices = post_indices[:, torch.multinomial(post_probs, 1).flatten()] # batch

            # next_indices = top_indices[torch.arange(batch_size).to(top_indices.device), index_into_top_indices] # batch
            next_indices = top_indices[:, index_into_top_indices] # batch

            # encoded_input = torch.cat([encoded_input, next_indices.unsqueeze(1)], dim=1) # batch x seq+1
            encoded_input = torch.cat([encoded_input, next_indices.squeeze(1)], dim=1)
            lengths = lengths + 1 # batch

#             print(tokenizer.decode(encoded_input[0], add_special_tokens=False))
        return [tokenizer.decode(s) for s in encoded_input]
    

if __name__=='__main__':
    parser = ArgumentParser()

    # DATA
    parser.add_argument('--ckpt', type=str, required=True)
    parser.add_argument('--dataset_info', type=str, required=True, help='saved dataset info')
    parser.add_argument('--model_string', type=str, default='Helsinki-NLP/opus-mt-es-en')

    parser.add_argument('--in_file', type=str, default=None, required=True, help='text to run pred on')

    parser.add_argument('--precondition_topk', type=int, default=200, help='consider top k outputs from text generation at each step before conditioning and re-pruning')
    parser.add_argument('--do_sample', action='store_true', default=False, help='sample instead of greedy')
    parser.add_argument('--condition_lambda', type=float, default=1.0, help='lambda weight on conditioning model')
    parser.add_argument('--length_cutoff', type=int, default=512, help='max length')

    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda'])
    parser.add_argument('--debug', action='store_true', default=False)

    args = parser.parse_args()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    main(args)