Spaces:
Runtime error
Runtime error
File size: 5,245 Bytes
dfc2b86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.datasets import make_blobs, make_circles, make_moons
import gradio as gr
import math
from functools import partial
### DATASETS
def normalize(X):
return StandardScaler().fit_transform(X)
def linearly_separable():
X, y = make_classification(
n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1
)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
return linearly_separable
DATA_MAPPING = {
"Moons": make_moons(noise=0.3, random_state=0),
"Circles":make_circles(noise=0.2, factor=0.5, random_state=1),
"Linearly Separable Random Dataset": linearly_separable(),
}
#### MODELS
def get_groundtruth_model(X, labels):
# dummy model to show true label distribution
class Dummy:
def __init__(self, y):
self.labels_ = labels
return Dummy(labels)
DATASETS = [
make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable()
]
NAME_CLF_MAPPING = {
"Ground Truth":get_groundtruth_model,
"Nearest Neighbors":KNeighborsClassifier(3),
"Linear SVM":SVC(kernel="linear", C=0.025),
"RBF SVM":SVC(gamma=2, C=1),
"Gaussian Process":GaussianProcessClassifier(1.0 * RBF(1.0)),
"Decision Tree":DecisionTreeClassifier(max_depth=5),
"Random Forest":RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
"Neural Net":MLPClassifier(alpha=1, max_iter=1000),
"AdaBoost":AdaBoostClassifier(),
"Naive Bayes":GaussianNB(),
}
#### PLOT
FIGSIZE = 7,7
figure = plt.figure(figsize=(25, 10))
i = 1
def train_models(selected_data, clf_name):
cm = plt.cm.RdBu
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
clf = NAME_CLF_MAPPING[clf_name]
X, y = DATA_MAPPING[selected_data]
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.4, random_state=42
)
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
if clf_name != "Ground Truth":
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
fig, ax = plt.subplots(figsize=FIGSIZE)
ax.set_title(clf_name, fontsize = 10)
DecisionBoundaryDisplay.from_estimator(
clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
).plot()
return fig
else:
#########
for ds_cnt, ds in enumerate(DATASETS):
X, y = ds
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
fig, ax = plt.subplots(figsize=FIGSIZE)
ax.set_title("Input data")
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")
# Plot the testing points
ax.scatter(
X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"
)
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(())
ax.set_yticks(())
return fig
###########
description = "Learn how different statistical classifiers perform in different datasets."
def iter_grid(n_rows, n_cols):
# create a grid using gradio Block
for _ in range(n_rows):
with gr.Row():
for _ in range(n_cols):
with gr.Column():
yield
title = "Compare Classifiers!"
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
input_models = list(NAME_CLF_MAPPING)
input_data = gr.Radio(
choices=["Moons", "Circles", "Linearly Separable Random Dataset"],
value="Moons"
)
counter = 0
for _ in iter_grid(2, 5):
if counter >= len(input_models):
break
input_model = input_models[counter]
plot = gr.Plot(label=input_model)
fn = partial(train_models, clf_name=input_model)
input_data.change(fn=fn, inputs=[input_data], outputs=plot)
counter += 1
demo.launch(debug=True)
|