File size: 5,245 Bytes
dfc2b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.datasets import make_blobs, make_circles, make_moons
import gradio as gr
import math
from functools import partial



### DATASETS

def normalize(X):
    return StandardScaler().fit_transform(X)


def linearly_separable():
    X, y = make_classification(
        n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1
    )
    rng = np.random.RandomState(2)
    X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)
    return linearly_separable

DATA_MAPPING = {
    "Moons": make_moons(noise=0.3, random_state=0),
    "Circles":make_circles(noise=0.2, factor=0.5, random_state=1),
    "Linearly Separable Random Dataset": linearly_separable(),
}


#### MODELS

def get_groundtruth_model(X, labels):
    # dummy model to show true label distribution
    class Dummy:
        def __init__(self, y):
            self.labels_ = labels

    return Dummy(labels)
    
DATASETS = [
    make_moons(noise=0.3, random_state=0),
    make_circles(noise=0.2, factor=0.5, random_state=1),
    linearly_separable()
]
NAME_CLF_MAPPING = {
    "Ground Truth":get_groundtruth_model,
    "Nearest Neighbors":KNeighborsClassifier(3),
    "Linear SVM":SVC(kernel="linear", C=0.025),
    "RBF SVM":SVC(gamma=2, C=1),
    "Gaussian Process":GaussianProcessClassifier(1.0 * RBF(1.0)),
    "Decision Tree":DecisionTreeClassifier(max_depth=5),
    "Random Forest":RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
    "Neural Net":MLPClassifier(alpha=1, max_iter=1000),
    "AdaBoost":AdaBoostClassifier(),
    "Naive Bayes":GaussianNB(),
}



#### PLOT
FIGSIZE = 7,7
figure = plt.figure(figsize=(25, 10))
i = 1




def train_models(selected_data, clf_name):
    cm = plt.cm.RdBu
    cm_bright = ListedColormap(["#FF0000", "#0000FF"])
    clf = NAME_CLF_MAPPING[clf_name]
    
    X, y = DATA_MAPPING[selected_data]
    X = StandardScaler().fit_transform(X)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.4, random_state=42
    )
    
    x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
    y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
    if clf_name != "Ground Truth":
        clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)
        fig, ax = plt.subplots(figsize=FIGSIZE)
        ax.set_title(clf_name, fontsize = 10)
        
        DecisionBoundaryDisplay.from_estimator(
                clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
            ).plot()
        return fig
    else:
        #########
        
        for ds_cnt, ds in enumerate(DATASETS):
            X, y = ds

            x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
            y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

            # just plot the dataset first
            cm = plt.cm.RdBu
            cm_bright = ListedColormap(["#FF0000", "#0000FF"])
            fig, ax = plt.subplots(figsize=FIGSIZE)
            ax.set_title("Input data")
            # Plot the training points

            ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")
            # Plot the testing points
            ax.scatter(
                X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"
            )
            ax.set_xlim(x_min, x_max)
            ax.set_ylim(y_min, y_max)
            ax.set_xticks(())
            ax.set_yticks(())

            return fig



        ###########
description = "Learn how different statistical classifiers perform in different datasets."

def iter_grid(n_rows, n_cols):
    # create a grid using gradio Block
    for _ in range(n_rows):
        with gr.Row():
            for _ in range(n_cols):
                with gr.Column():
                    yield

title = "Compare Classifiers!"
with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description)

    input_models = list(NAME_CLF_MAPPING)
    input_data = gr.Radio(
        choices=["Moons", "Circles", "Linearly Separable Random Dataset"],
        value="Moons"
    )
    counter = 0


    for _ in iter_grid(2, 5):
        if counter >= len(input_models):
            break

        input_model = input_models[counter]
        plot = gr.Plot(label=input_model)
        fn = partial(train_models, clf_name=input_model)
        input_data.change(fn=fn, inputs=[input_data], outputs=plot)
        counter += 1

demo.launch(debug=True)