import gradio as gr import pypistats from datetime import date from dateutil.relativedelta import relativedelta import pandas as pd from prophet import Prophet pd.options.plotting.backend = "plotly" def get_forecast(lib, time): data = pypistats.overall(lib, total=True, format="pandas") data = data.groupby("category").get_group("with_mirrors").sort_values("date") start_date = date.today() - relativedelta(months=int(time.split(" ")[0])) df = data[(data['date'] > str(start_date))] df1 = df[['date','downloads']] df1.columns = ['ds','y'] m = Prophet() m.fit(df1) future = m.make_future_dataframe(periods=90) forecast = m.predict(future) fig1 = m.plot(forecast) return fig1 with gr.Blocks() as demo: gr.Markdown( """ ## Pypi Download Stats 📈 with Prophet Forecasting See live download stats for popular open-source libraries 🤗 along with a 3 month forecast using Prophet The source is [here](https://huggingface.co/gradio/timeseries-forecasting-with-prophet). """) with gr.Row(): lib = gr.Dropdown(["pandas", "scikit-learn", "torch", "prophet"], label="Library", value="pandas") time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"], label="Downloads over the last...", value="12 months") plt = gr.Plot() lib.change(get_forecast, [lib, time], plt) time.change(get_forecast, [lib, time], plt) demo.load(get_forecast, [lib, time], plt) demo.launch()