File size: 4,324 Bytes
445d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# This code is based on https://github.com/Mael-zys/T2M-GPT.git
import torch.nn as nn
from models.encdec import Encoder, Decoder
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset


class VQVAE_251(nn.Module):
    def __init__(self,
                 args,
                 nb_code=1024,
                 code_dim=512,
                 output_emb_width=512,
                 down_t=3,
                 stride_t=2,
                 width=512,
                 depth=3,
                 dilation_growth_rate=3,
                 activation='relu',
                 norm=None):
        
        super().__init__()
        self.code_dim = code_dim
        self.num_code = nb_code
        self.quant = args.quantizer
        self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
        self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
        if args.quantizer == "ema_reset":
            self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
        elif args.quantizer == "orig":
            self.quantizer = Quantizer(nb_code, code_dim, 1.0)
        elif args.quantizer == "ema":
            self.quantizer = QuantizeEMA(nb_code, code_dim, args)
        elif args.quantizer == "reset":
            self.quantizer = QuantizeReset(nb_code, code_dim, args)


    def preprocess(self, x):
        # (bs, T, Jx3) -> (bs, Jx3, T)
        x = x.permute(0,2,1).float()
        return x


    def postprocess(self, x):
        # (bs, Jx3, T) ->  (bs, T, Jx3)
        x = x.permute(0,2,1)
        return x


    def encode(self, x):
        N, T, _ = x.shape
        x_in = self.preprocess(x)
        x_encoder = self.encoder(x_in)
        # import pdb; pdb.set_trace()
        x_encoder = self.postprocess(x_encoder)
        x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1])  # (NT, C)
        code_idx = self.quantizer.quantize(x_encoder)
        code_idx = code_idx.view(N, -1)
        return code_idx


    def encode_x(self, x):
        N, T, _ = x.shape
        x_in = self.preprocess(x)
        x_encoder = self.encoder(x_in)
        # import pdb; pdb.set_trace()
        x_encoder = self.postprocess(x_encoder)
        x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1])  # (NT, C)
        return x_encoder # (B*T, 512)

    def forward(self, x):
        
        x_in = self.preprocess(x)
        # Encode
        x_encoder = self.encoder(x_in)
        
        ## quantization
        x_quantized, loss, perplexity  = self.quantizer(x_encoder)

        ## decoder
        x_decoder = self.decoder(x_quantized)
        x_out = self.postprocess(x_decoder)
        return x_out, loss, perplexity


    def forward_decoder(self, x):
        x_d = self.quantizer.dequantize(x)
        x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
        
        # decoder
        x_decoder = self.decoder(x_d)
        x_out = self.postprocess(x_decoder)
        return x_out



class HumanVQVAE(nn.Module):
    def __init__(self,
                 args,
                 nb_code=512,
                 code_dim=512,
                 output_emb_width=512,
                 down_t=3,
                 stride_t=2,
                 width=512,
                 depth=3,
                 dilation_growth_rate=3,
                 activation='relu',
                 norm=None):
        
        super().__init__()
        
        self.nb_joints = 21 if args.dataname == 'kit' else 22
        self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)

    def encode(self, x):
        b, t, c = x.size()
        quants = self.vqvae.encode(x) # (N, T)
        return quants

    def encode_x(self, x):
        b, t, c = x.size()
        quants = self.vqvae.encode_x(x) # (N, T)
        return quants

    def forward(self, x):

        x_out, loss, perplexity = self.vqvae(x)
        
        return x_out, loss, perplexity

    def forward_decoder(self, x):
        x_out = self.vqvae.forward_decoder(x)
        return x_out