MotionLLM / models /resnet.py
EvanTHU
update
445d3d1
raw
history blame
2.65 kB
import torch.nn as nn
import torch
class nonlinearity(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
# swish
return x * torch.sigmoid(x)
class ResConv1DBlock(nn.Module):
def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
super().__init__()
padding = dilation
self.norm = norm
if norm == "LN":
self.norm1 = nn.LayerNorm(n_in)
self.norm2 = nn.LayerNorm(n_in)
elif norm == "GN":
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
elif norm == "BN":
self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
else:
self.norm1 = nn.Identity()
self.norm2 = nn.Identity()
if activation == "relu":
self.activation1 = nn.ReLU()
self.activation2 = nn.ReLU()
elif activation == "silu":
self.activation1 = nonlinearity()
self.activation2 = nonlinearity()
elif activation == "gelu":
self.activation1 = nn.GELU()
self.activation2 = nn.GELU()
self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0,)
def forward(self, x):
x_orig = x
if self.norm == "LN":
x = self.norm1(x.transpose(-2, -1))
x = self.activation1(x.transpose(-2, -1))
else:
x = self.norm1(x)
x = self.activation1(x)
x = self.conv1(x)
if self.norm == "LN":
x = self.norm2(x.transpose(-2, -1))
x = self.activation2(x.transpose(-2, -1))
else:
x = self.norm2(x)
x = self.activation2(x)
x = self.conv2(x)
x = x + x_orig
return x
class Resnet1D(nn.Module):
def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
super().__init__()
blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm) for depth in range(n_depth)]
if reverse_dilation:
blocks = blocks[::-1]
self.model = nn.Sequential(*blocks)
def forward(self, x):
return self.model(x)