import torch from torch import nn from transformers import AutoConfig from .image.configuration_image import LanguageBindImageConfig from .image.modeling_image import LanguageBindImage from .image.tokenization_image import LanguageBindImageTokenizer from .image.processing_image import LanguageBindImageProcessor from .video.configuration_video import LanguageBindVideoConfig from .video.modeling_video import LanguageBindVideo from .video.tokenization_video import LanguageBindVideoTokenizer from .video.processing_video import LanguageBindVideoProcessor from .depth.configuration_depth import LanguageBindDepthConfig from .depth.modeling_depth import LanguageBindDepth from .depth.tokenization_depth import LanguageBindDepthTokenizer from .depth.processing_depth import LanguageBindDepthProcessor from .audio.configuration_audio import LanguageBindAudioConfig from .audio.modeling_audio import LanguageBindAudio from .audio.tokenization_audio import LanguageBindAudioTokenizer from .audio.processing_audio import LanguageBindAudioProcessor from .thermal.configuration_thermal import LanguageBindThermalConfig from .thermal.modeling_thermal import LanguageBindThermal from .thermal.tokenization_thermal import LanguageBindThermalTokenizer from .thermal.processing_thermal import LanguageBindThermalProcessor config_dict = { 'thermal': LanguageBindThermalConfig, 'image': LanguageBindImageConfig, 'video': LanguageBindVideoConfig, 'depth': LanguageBindDepthConfig, 'audio': LanguageBindAudioConfig } model_dict = { 'thermal': LanguageBindThermal, 'image': LanguageBindImage, 'video': LanguageBindVideo, 'depth': LanguageBindDepth, 'audio': LanguageBindAudio } transform_dict = { 'video': LanguageBindVideoProcessor, 'audio': LanguageBindAudioProcessor, 'depth': LanguageBindDepthProcessor, 'thermal': LanguageBindThermalProcessor, 'image': LanguageBindImageProcessor, } class LanguageBind(nn.Module): def __init__(self, clip_type=('thermal', 'image', 'video', 'depth', 'audio'), use_temp=True, cache_dir='./cache_dir'): super(LanguageBind, self).__init__() self.use_temp = use_temp self.modality_encoder = {} self.modality_proj = {} self.modality_scale = {} self.modality_config = {} for c in clip_type: pretrained_ckpt = f'LanguageBind/LanguageBind_{c.capitalize()}' model = model_dict[c].from_pretrained(pretrained_ckpt, cache_dir=cache_dir) self.modality_encoder[c] = model.vision_model self.modality_proj[c] = model.visual_projection self.modality_scale[c] = model.logit_scale self.modality_config[c] = model.config self.modality_encoder['language'] = model.text_model self.modality_proj['language'] = model.text_projection self.modality_encoder = nn.ModuleDict(self.modality_encoder) self.modality_proj = nn.ModuleDict(self.modality_proj) def forward(self, inputs): outputs = {} for key, value in inputs.items(): value = self.modality_encoder[key](**value)[1] value = self.modality_proj[key](value) value = value / value.norm(p=2, dim=-1, keepdim=True) if self.use_temp: if key != 'language': value = value * self.modality_scale[key].exp() outputs[key] = value return outputs def to_device(x, device): out_dict = {k: v.to(device) for k, v in x.items()} return out_dict class LanguageBindImageTower(nn.Module): def __init__(self, image_tower, args, delay_load=False, cache_dir='./cache_dir'): super().__init__() # import pdb; pdb.set_trace() self.is_loaded = False self.image_tower_name = image_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') self.cache_dir = cache_dir if not delay_load: self.load_model() else: # import pdb; pdb.set_trace() self.cfg_only = LanguageBindImageConfig.from_pretrained(self.image_tower_name, cache_dir=self.cache_dir) ############################################################ def load_model(self): model = LanguageBindImage.from_pretrained(self.image_tower_name, cache_dir=self.cache_dir) self.image_tower = model.vision_model self.image_tower.requires_grad_(False) self.image_processor = LanguageBindImageProcessor(model.config) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.image_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: # print('images', images.shape) image_forward_outs = self.image_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) # print('image_forward_outs', len(image_forward_outs), image_forward_outs[0].shape) image_features = self.feature_select(image_forward_outs).to(images.dtype) # print('image_features', image_features.shape) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.image_tower.embeddings.class_embedding.dtype ############# @property def device(self): return self.image_tower.embeddings.class_embedding.device ############## @property def config(self): if self.is_loaded: return self.image_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 class temp_model(nn.Module): def __init__(self): super(temp_model, self).__init__() def forward(self, **kwargs): return torch.randn(25, 1, 256, 1024) class LanguageBindVideoTower(nn.Module): def __init__(self, video_tower, args, delay_load=False, cache_dir='./cache_dir'): super().__init__() self.is_loaded = False self.video_tower_name = video_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') self.cache_dir = cache_dir if not delay_load: self.load_model() else: self.cfg_only = LanguageBindVideoConfig.from_pretrained(self.video_tower_name, cache_dir=self.cache_dir) ## 使用deley load, from_pretrained 之后,self.is_loaded 仍然是false # import pdb; pdb.set_trace() ############################################################ def load_model(self): model = LanguageBindVideo.from_pretrained(self.video_tower_name, cache_dir=self.cache_dir) self.video_processor = LanguageBindVideoProcessor(model.config) # model = LanguageBindImage.from_pretrained('LanguageBind/LanguageBind_Image', cache_dir=self.cache_dir) self.video_tower = model.vision_model self.video_tower.requires_grad_(False) self.is_loaded = True # def feature_select(self, image_forward_outs): # image_features = image_forward_outs.hidden_states[self.select_layer] # if self.select_feature == 'patch': # image_features = image_features[:, 1:] # elif self.select_feature == 'cls_patch': # image_features = image_features # else: # raise ValueError(f'Unexpected select feature: {self.select_feature}') # return image_features def feature_select(self, video_forward_outs): # print('len(video_forward_outs.hidden_states)', len(video_forward_outs.hidden_states)) video_features = video_forward_outs.hidden_states[self.select_layer] # b t n c b, t, n, c = video_features.shape # print('video_features', video_features.shape) if self.select_feature == 'patch': # video_features = video_features[:, 1:] video_features = video_features[:, :, 1:] video_features = video_features.reshape(b, -1, c) elif self.select_feature == 'cls_patch': # video_features = video_features video_features = video_features.reshape(b, -1, c) else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return video_features @torch.no_grad() def forward(self, videos): # import pdb; pdb.set_trace() if type(videos) is list: video_features = [] for video in videos: video_forward_out = self.video_tower(video.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) video_feature = self.feature_select(video_forward_out).to(video.dtype) video_features.append(video_feature) else: # print(11111111111, videos.shape) video_forward_outs = self.video_tower(videos.to(device=self.device, dtype=self.dtype), output_hidden_states=True) video_features = self.feature_select(video_forward_outs).to(videos.dtype) return video_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.video_tower.embeddings.class_embedding.dtype ############# # return torch.randn(1).cuda().dtype @property def device(self): return self.video_tower.embeddings.class_embedding.device ############## # return torch.randn(1).cuda().device @property def config(self): if self.is_loaded: return self.video_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2