File size: 5,581 Bytes
5238467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9138f15
5238467
9138f15
5238467
5325fcc
5238467
 
5325fcc
5238467
5325fcc
5238467
 
5325fcc
 
9138f15
 
 
 
 
 
 
 
5325fcc
 
5238467
9138f15
 
 
 
 
 
7ccdf69
 
 
 
9138f15
 
 
5325fcc
9138f15
 
5325fcc
 
 
9138f15
 
5325fcc
 
 
5238467
 
9138f15
5325fcc
 
 
5238467
 
 
 
 
 
 
 
5325fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9138f15
5325fcc
5238467
 
 
 
 
 
5325fcc
 
 
5238467
 
 
 
 
5325fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Utility functions to load from the checkpoints.
Each checkpoint is a torch.saved dict with the following keys:
- 'xp.cfg': the hydra config as dumped during training. This should be used
    to rebuild the object using the audiocraft.models.builders functions,
- 'model_best_state': a readily loadable best state for the model, including
    the conditioner. The model obtained from `xp.cfg` should be compatible
    with this state dict. In the case of a LM, the encodec model would not be
    bundled along but instead provided separately.

Those functions also support loading from a remote location with the Torch Hub API.
They also support overriding some parameters, in particular the device and dtype
of the returned model.
"""

from pathlib import Path
from huggingface_hub import hf_hub_download
import typing as tp
import os

from omegaconf import OmegaConf, DictConfig
import torch

import audiocraft
from . import builders
from .encodec import CompressionModel


def get_audiocraft_cache_dir() -> tp.Optional[str]:
    return os.environ.get('AUDIOCRAFT_CACHE_DIR', None)


def _get_state_dict(
    file_or_url_or_id: tp.Union[Path, str],
    filename: tp.Optional[str] = None,
    device='cpu',
    cache_dir: tp.Optional[str] = None,
):
    if cache_dir is None:
        cache_dir = get_audiocraft_cache_dir()
    # Return the state dict either from a file or url
    file_or_url_or_id = str(file_or_url_or_id)
    assert isinstance(file_or_url_or_id, str)

    if os.path.isfile(file_or_url_or_id):
        return torch.load(file_or_url_or_id, map_location=device)

    if os.path.isdir(file_or_url_or_id):
        file = f"{file_or_url_or_id}/{filename}"
        return torch.load(file, map_location=device)

    elif file_or_url_or_id.startswith('https://'):
        return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True)

    else:
        assert filename is not None, "filename needs to be defined if using HF checkpoints"

        file = hf_hub_download(
            repo_id=file_or_url_or_id, filename=filename, cache_dir=cache_dir,
            library_name="audiocraft", library_version=audiocraft.__version__)
        return torch.load(file, map_location=device)


def load_compression_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None):
    return _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir)


def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None):
    pkg = load_compression_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
    if 'pretrained' in pkg:
        return CompressionModel.get_pretrained(pkg['pretrained'], device=device)
    cfg = OmegaConf.create(pkg['xp.cfg'])
    cfg.device = str(device)
    model = builders.get_compression_model(cfg)
    model.load_state_dict(pkg['best_state'])
    model.eval()
    return model


def load_lm_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None):
    return _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir)


def _delete_param(cfg: DictConfig, full_name: str):
    parts = full_name.split('.')
    for part in parts[:-1]:
        if part in cfg:
            cfg = cfg[part]
        else:
            return
    OmegaConf.set_struct(cfg, False)
    if parts[-1] in cfg:
        del cfg[parts[-1]]
    OmegaConf.set_struct(cfg, True)


def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None):
    pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
    cfg = OmegaConf.create(pkg['xp.cfg'])
    cfg.device = str(device)
    if cfg.device == 'cpu':
        cfg.dtype = 'float32'
    else:
        cfg.dtype = 'float16'
    _delete_param(cfg, 'conditioners.self_wav.chroma_stem.cache_path')
    _delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
    _delete_param(cfg, 'conditioners.args.drop_desc_p')
    model = builders.get_lm_model(cfg)
    model.load_state_dict(pkg['best_state'])
    model.eval()
    model.cfg = cfg
    return model


def load_mbd_ckpt(file_or_url_or_id: tp.Union[Path, str],
                  filename: tp.Optional[str] = None,
                  cache_dir: tp.Optional[str] = None):
    return _get_state_dict(file_or_url_or_id, filename=filename, cache_dir=cache_dir)


def load_diffusion_models(file_or_url_or_id: tp.Union[Path, str],
                          device='cpu',
                          filename: tp.Optional[str] = None,
                          cache_dir: tp.Optional[str] = None):
    pkg = load_mbd_ckpt(file_or_url_or_id, filename=filename, cache_dir=cache_dir)
    models = []
    processors = []
    cfgs = []
    sample_rate = pkg['sample_rate']
    for i in range(pkg['n_bands']):
        cfg = pkg[i]['cfg']
        model = builders.get_diffusion_model(cfg)
        model_dict = pkg[i]['model_state']
        model.load_state_dict(model_dict)
        model.to(device)
        processor = builders.get_processor(cfg=cfg.processor, sample_rate=sample_rate)
        processor_dict = pkg[i]['processor_state']
        processor.load_state_dict(processor_dict)
        processor.to(device)
        models.append(model)
        processors.append(processor)
        cfgs.append(cfg)
    return models, processors, cfgs