|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import typing as tp |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
def _stft(x: torch.Tensor, fft_size: int, hop_length: int, win_length: int, |
|
window: tp.Optional[torch.Tensor], normalized: bool) -> torch.Tensor: |
|
"""Perform STFT and convert to magnitude spectrogram. |
|
|
|
Args: |
|
x: Input signal tensor (B, C, T). |
|
fft_size (int): FFT size. |
|
hop_length (int): Hop size. |
|
win_length (int): Window length. |
|
window (torch.Tensor or None): Window function type. |
|
normalized (bool): Whether to normalize the STFT or not. |
|
|
|
Returns: |
|
torch.Tensor: Magnitude spectrogram (B, C, #frames, fft_size // 2 + 1). |
|
""" |
|
B, C, T = x.shape |
|
x_stft = torch.stft( |
|
x.view(-1, T), fft_size, hop_length, win_length, window, |
|
normalized=normalized, return_complex=True, |
|
) |
|
x_stft = x_stft.view(B, C, *x_stft.shape[1:]) |
|
real = x_stft.real |
|
imag = x_stft.imag |
|
|
|
|
|
return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1) |
|
|
|
|
|
class SpectralConvergenceLoss(nn.Module): |
|
"""Spectral convergence loss. |
|
""" |
|
def __init__(self, epsilon: float = torch.finfo(torch.float32).eps): |
|
super().__init__() |
|
self.epsilon = epsilon |
|
|
|
def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x_mag: Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). |
|
y_mag: Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). |
|
Returns: |
|
torch.Tensor: Spectral convergence loss value. |
|
""" |
|
return torch.norm(y_mag - x_mag, p="fro") / (torch.norm(y_mag, p="fro") + self.epsilon) |
|
|
|
|
|
class LogSTFTMagnitudeLoss(nn.Module): |
|
"""Log STFT magnitude loss. |
|
|
|
Args: |
|
epsilon (float): Epsilon value for numerical stability. |
|
""" |
|
def __init__(self, epsilon: float = torch.finfo(torch.float32).eps): |
|
super().__init__() |
|
self.epsilon = epsilon |
|
|
|
def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x_mag (torch.Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). |
|
y_mag (torch.Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). |
|
Returns: |
|
torch.Tensor: Log STFT magnitude loss value. |
|
""" |
|
return F.l1_loss(torch.log(self.epsilon + y_mag), torch.log(self.epsilon + x_mag)) |
|
|
|
|
|
class STFTLosses(nn.Module): |
|
"""STFT losses. |
|
|
|
Args: |
|
n_fft (int): Size of FFT. |
|
hop_length (int): Hop length. |
|
win_length (int): Window length. |
|
window (str): Window function type. |
|
normalized (bool): Whether to use normalized STFT or not. |
|
epsilon (float): Epsilon for numerical stability. |
|
""" |
|
def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600, |
|
window: str = "hann_window", normalized: bool = False, |
|
epsilon: float = torch.finfo(torch.float32).eps): |
|
super().__init__() |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.normalized = normalized |
|
self.register_buffer("window", getattr(torch, window)(win_length)) |
|
self.spectral_convergenge_loss = SpectralConvergenceLoss(epsilon) |
|
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss(epsilon) |
|
|
|
def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (torch.Tensor): Predicted signal (B, T). |
|
y (torch.Tensor): Groundtruth signal (B, T). |
|
Returns: |
|
torch.Tensor: Spectral convergence loss value. |
|
torch.Tensor: Log STFT magnitude loss value. |
|
""" |
|
x_mag = _stft(x, self.n_fft, self.hop_length, |
|
self.win_length, self.window, self.normalized) |
|
y_mag = _stft(y, self.n_fft, self.hop_length, |
|
self.win_length, self.window, self.normalized) |
|
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) |
|
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) |
|
|
|
return sc_loss, mag_loss |
|
|
|
|
|
class STFTLoss(nn.Module): |
|
"""Single Resolution STFT loss. |
|
|
|
Args: |
|
n_fft (int): Nb of FFT. |
|
hop_length (int): Hop length. |
|
win_length (int): Window length. |
|
window (str): Window function type. |
|
normalized (bool): Whether to use normalized STFT or not. |
|
epsilon (float): Epsilon for numerical stability. |
|
factor_sc (float): Coefficient for the spectral loss. |
|
factor_mag (float): Coefficient for the magnitude loss. |
|
""" |
|
def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600, |
|
window: str = "hann_window", normalized: bool = False, |
|
factor_sc: float = 0.1, factor_mag: float = 0.1, |
|
epsilon: float = torch.finfo(torch.float32).eps): |
|
super().__init__() |
|
self.loss = STFTLosses(n_fft, hop_length, win_length, window, normalized, epsilon) |
|
self.factor_sc = factor_sc |
|
self.factor_mag = factor_mag |
|
|
|
def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (torch.Tensor): Predicted signal (B, T). |
|
y (torch.Tensor): Groundtruth signal (B, T). |
|
Returns: |
|
torch.Tensor: Single resolution STFT loss. |
|
""" |
|
sc_loss, mag_loss = self.loss(x, y) |
|
return self.factor_sc * sc_loss + self.factor_mag * mag_loss |
|
|
|
|
|
class MRSTFTLoss(nn.Module): |
|
"""Multi resolution STFT loss. |
|
|
|
Args: |
|
n_ffts (Sequence[int]): Sequence of FFT sizes. |
|
hop_lengths (Sequence[int]): Sequence of hop sizes. |
|
win_lengths (Sequence[int]): Sequence of window lengths. |
|
window (str): Window function type. |
|
factor_sc (float): Coefficient for the spectral loss. |
|
factor_mag (float): Coefficient for the magnitude loss. |
|
normalized (bool): Whether to use normalized STFT or not. |
|
epsilon (float): Epsilon for numerical stability. |
|
""" |
|
def __init__(self, n_ffts: tp.Sequence[int] = [1024, 2048, 512], hop_lengths: tp.Sequence[int] = [120, 240, 50], |
|
win_lengths: tp.Sequence[int] = [600, 1200, 240], window: str = "hann_window", |
|
factor_sc: float = 0.1, factor_mag: float = 0.1, |
|
normalized: bool = False, epsilon: float = torch.finfo(torch.float32).eps): |
|
super().__init__() |
|
assert len(n_ffts) == len(hop_lengths) == len(win_lengths) |
|
self.stft_losses = torch.nn.ModuleList() |
|
for fs, ss, wl in zip(n_ffts, hop_lengths, win_lengths): |
|
self.stft_losses += [STFTLosses(fs, ss, wl, window, normalized, epsilon)] |
|
self.factor_sc = factor_sc |
|
self.factor_mag = factor_mag |
|
|
|
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (torch.Tensor): Predicted signal (B, T). |
|
y (torch.Tensor): Groundtruth signal (B, T). |
|
Returns: |
|
torch.Tensor: Multi resolution STFT loss. |
|
""" |
|
sc_loss = torch.Tensor([0.0]) |
|
mag_loss = torch.Tensor([0.0]) |
|
for f in self.stft_losses: |
|
sc_l, mag_l = f(x, y) |
|
sc_loss += sc_l |
|
mag_loss += mag_l |
|
sc_loss /= len(self.stft_losses) |
|
mag_loss /= len(self.stft_losses) |
|
|
|
return self.factor_sc * sc_loss + self.factor_mag * mag_loss |
|
|