Spaces:
Runtime error
Runtime error
Abhilashvj
commited on
Commit
β’
610385f
1
Parent(s):
ab8dd8d
Update app.py
Browse files
app.py
CHANGED
@@ -1,305 +1,305 @@
|
|
1 |
-
import json
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
import sys
|
6 |
-
import uuid
|
7 |
-
from json import JSONDecodeError
|
8 |
-
from pathlib import Path
|
9 |
-
|
10 |
-
import pandas as pd
|
11 |
-
import pinecone
|
12 |
-
import streamlit as st
|
13 |
-
from annotated_text import annotation
|
14 |
-
from haystack import Document
|
15 |
-
from haystack.document_stores import PineconeDocumentStore
|
16 |
-
from haystack.nodes import (
|
17 |
-
DocxToTextConverter,
|
18 |
-
EmbeddingRetriever,
|
19 |
-
FARMReader,
|
20 |
-
FileTypeClassifier,
|
21 |
-
PDFToTextConverter,
|
22 |
-
PreProcessor,
|
23 |
-
TextConverter,
|
24 |
-
)
|
25 |
-
from haystack.pipelines import ExtractiveQAPipeline, Pipeline
|
26 |
-
from markdown import markdown
|
27 |
-
from sentence_transformers import SentenceTransformer
|
28 |
-
|
29 |
-
index_name = "qa_demo"
|
30 |
-
|
31 |
-
|
32 |
-
# connect to pinecone environment
|
33 |
-
pinecone.init(
|
34 |
-
api_key=st.secrets["pinecone_apikey"],
|
35 |
-
# environment="us-west1-gcp"
|
36 |
-
)
|
37 |
-
index_name = "qa-demo"
|
38 |
-
|
39 |
-
preprocessor = PreProcessor(
|
40 |
-
clean_empty_lines=True,
|
41 |
-
clean_whitespace=True,
|
42 |
-
clean_header_footer=False,
|
43 |
-
split_by="word",
|
44 |
-
split_length=100,
|
45 |
-
split_respect_sentence_boundary=True
|
46 |
-
)
|
47 |
-
file_type_classifier = FileTypeClassifier()
|
48 |
-
text_converter = TextConverter()
|
49 |
-
pdf_converter = PDFToTextConverter()
|
50 |
-
docx_converter = DocxToTextConverter()
|
51 |
-
|
52 |
-
# check if the abstractive-question-answering index exists
|
53 |
-
if index_name not in pinecone.list_indexes():
|
54 |
-
# create the index if it does not exist
|
55 |
-
pinecone.create_index(
|
56 |
-
index_name,
|
57 |
-
dimension=768,
|
58 |
-
metric="cosine"
|
59 |
-
)
|
60 |
-
|
61 |
-
# connect to abstractive-question-answering index we created
|
62 |
-
index = pinecone.Index(index_name)
|
63 |
-
|
64 |
-
FILE_UPLOAD_PATH= "./data/uploads/"
|
65 |
-
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
|
66 |
-
# @st.cache
|
67 |
-
def create_doc_store():
|
68 |
-
document_store = PineconeDocumentStore(
|
69 |
-
api_key= st.secrets["pinecone_apikey"],
|
70 |
-
index=index_name,
|
71 |
-
similarity="cosine",
|
72 |
-
embedding_dim=768
|
73 |
-
)
|
74 |
-
return document_store
|
75 |
-
|
76 |
-
# @st.cache
|
77 |
-
# def create_pipe(document_store):
|
78 |
-
# retriever = EmbeddingRetriever(
|
79 |
-
# document_store=document_store,
|
80 |
-
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
81 |
-
# model_format="sentence_transformers",
|
82 |
-
# )
|
83 |
-
# reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
84 |
-
# pipe = ExtractiveQAPipeline(reader, retriever)
|
85 |
-
# return pipe
|
86 |
-
|
87 |
-
def query(pipe, question, top_k_reader, top_k_retriever):
|
88 |
-
res = pipe.run(
|
89 |
-
query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}}
|
90 |
-
)
|
91 |
-
answer_df = []
|
92 |
-
# for r in res['answers']:
|
93 |
-
# ans_dict = res['answers'][0].meta
|
94 |
-
# ans_dict["answer"] = r.context
|
95 |
-
# answer_df.append(ans_dict)
|
96 |
-
# result = pd.DataFrame(answer_df)
|
97 |
-
# result.columns = ["Source","Title","Year","Link","Answer"]
|
98 |
-
# result[["Answer","Link","Source","Title","Year"]]
|
99 |
-
return res
|
100 |
-
|
101 |
-
document_store = create_doc_store()
|
102 |
-
# pipe = create_pipe(document_store)
|
103 |
-
retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
104 |
-
retriever = EmbeddingRetriever(
|
105 |
-
document_store=document_store,
|
106 |
-
embedding_model=retriever_model,
|
107 |
-
model_format="sentence_transformers",
|
108 |
-
)
|
109 |
-
# load the retriever model from huggingface model hub
|
110 |
-
sentence_encoder = SentenceTransformer(retriever_model)
|
111 |
-
|
112 |
-
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
113 |
-
pipe = ExtractiveQAPipeline(reader, retriever)
|
114 |
-
|
115 |
-
|
116 |
-
indexing_pipeline_with_classification = Pipeline()
|
117 |
-
indexing_pipeline_with_classification.add_node(
|
118 |
-
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
|
119 |
-
)
|
120 |
-
indexing_pipeline_with_classification.add_node(
|
121 |
-
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
|
122 |
-
)
|
123 |
-
indexing_pipeline_with_classification.add_node(
|
124 |
-
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
|
125 |
-
)
|
126 |
-
indexing_pipeline_with_classification.add_node(
|
127 |
-
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
|
128 |
-
)
|
129 |
-
indexing_pipeline_with_classification.add_node(
|
130 |
-
component=preprocessor,
|
131 |
-
name="Preprocessor",
|
132 |
-
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
|
133 |
-
)
|
134 |
-
|
135 |
-
def set_state_if_absent(key, value):
|
136 |
-
if key not in st.session_state:
|
137 |
-
st.session_state[key] = value
|
138 |
-
|
139 |
-
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
140 |
-
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
|
141 |
-
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")
|
142 |
-
|
143 |
-
# Sliders
|
144 |
-
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
145 |
-
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
|
146 |
-
|
147 |
-
|
148 |
-
st.set_page_config(page_title="
|
149 |
-
|
150 |
-
# Persistent state
|
151 |
-
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
|
152 |
-
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
|
153 |
-
set_state_if_absent("results", None)
|
154 |
-
|
155 |
-
|
156 |
-
# Small callback to reset the interface in case the text of the question changes
|
157 |
-
def reset_results(*args):
|
158 |
-
st.session_state.answer = None
|
159 |
-
st.session_state.results = None
|
160 |
-
st.session_state.raw_json = None
|
161 |
-
|
162 |
-
# Title
|
163 |
-
st.write("#
|
164 |
-
st.markdown(
|
165 |
-
"""
|
166 |
-
This demo takes its data from
|
167 |
-
Ask any question
|
168 |
-
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
|
169 |
-
""",
|
170 |
-
unsafe_allow_html=True,
|
171 |
-
)
|
172 |
-
|
173 |
-
# Sidebar
|
174 |
-
st.sidebar.header("Options")
|
175 |
-
st.sidebar.write("## File Upload:")
|
176 |
-
data_files = st.sidebar.file_uploader(
|
177 |
-
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
|
178 |
-
)
|
179 |
-
ALL_FILES = []
|
180 |
-
META_DATA = []
|
181 |
-
for data_file in data_files:
|
182 |
-
# Upload file
|
183 |
-
if data_file:
|
184 |
-
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
|
185 |
-
with open(file_path, "wb") as f:
|
186 |
-
f.write(data_file.getbuffer())
|
187 |
-
ALL_FILES.append(file_path)
|
188 |
-
st.sidebar.write(str(data_file.name) + " β
")
|
189 |
-
META_DATA.append({"filename":data_file.name})
|
190 |
-
|
191 |
-
|
192 |
-
if len(ALL_FILES) > 0:
|
193 |
-
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
|
194 |
-
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
|
195 |
-
index_name = "qa_demo"
|
196 |
-
# we will use batches of 64
|
197 |
-
batch_size = 64
|
198 |
-
# docs = docs['documents']
|
199 |
-
with st.spinner(
|
200 |
-
"π§ Performing indexing of uplaoded documents... \n "
|
201 |
-
):
|
202 |
-
for i in range(0, len(docs), batch_size):
|
203 |
-
# find end of batch
|
204 |
-
i_end = min(i+batch_size, len(docs))
|
205 |
-
# extract batch
|
206 |
-
batch = [doc.content for doc in docs[i:i_end]]
|
207 |
-
# generate embeddings for batch
|
208 |
-
emb = sentence_encoder.encode(batch).tolist()
|
209 |
-
# get metadata
|
210 |
-
meta = [doc.meta for doc in docs[i:i_end]]
|
211 |
-
# create unique IDs
|
212 |
-
ids = [doc.id for doc in docs[i:i_end]]
|
213 |
-
# add all to upsert list
|
214 |
-
to_upsert = list(zip(ids, emb, meta))
|
215 |
-
# upsert/insert these records to pinecone
|
216 |
-
_ = index.upsert(vectors=to_upsert)
|
217 |
-
|
218 |
-
top_k_reader = st.sidebar.slider(
|
219 |
-
"Max. number of answers",
|
220 |
-
min_value=1,
|
221 |
-
max_value=10,
|
222 |
-
value=DEFAULT_NUMBER_OF_ANSWERS,
|
223 |
-
step=1,
|
224 |
-
on_change=reset_results,
|
225 |
-
)
|
226 |
-
top_k_retriever = st.sidebar.slider(
|
227 |
-
"Max. number of documents from retriever",
|
228 |
-
min_value=1,
|
229 |
-
max_value=10,
|
230 |
-
value=DEFAULT_DOCS_FROM_RETRIEVER,
|
231 |
-
step=1,
|
232 |
-
on_change=reset_results,
|
233 |
-
)
|
234 |
-
# data_files = st.file_uploader(
|
235 |
-
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
|
236 |
-
# )
|
237 |
-
# for data_file in data_files:
|
238 |
-
# # Upload file
|
239 |
-
# if data_file:
|
240 |
-
# raw_json = upload_doc(data_file)
|
241 |
-
|
242 |
-
question = st.text_input(
|
243 |
-
value=st.session_state.question,
|
244 |
-
max_chars=100,
|
245 |
-
on_change=reset_results,
|
246 |
-
label="question",
|
247 |
-
label_visibility="hidden",
|
248 |
-
)
|
249 |
-
col1, col2 = st.columns(2)
|
250 |
-
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
251 |
-
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
252 |
-
|
253 |
-
# Run button
|
254 |
-
run_pressed = col1.button("Run")
|
255 |
-
if run_pressed:
|
256 |
-
|
257 |
-
run_query = (
|
258 |
-
run_pressed or question != st.session_state.question
|
259 |
-
)
|
260 |
-
# Get results for query
|
261 |
-
if run_query and question:
|
262 |
-
reset_results()
|
263 |
-
st.session_state.question = question
|
264 |
-
|
265 |
-
with st.spinner(
|
266 |
-
"π§ Performing neural search on documents... \n "
|
267 |
-
):
|
268 |
-
try:
|
269 |
-
st.session_state.results = query(
|
270 |
-
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
|
271 |
-
)
|
272 |
-
except JSONDecodeError as je:
|
273 |
-
st.error("π An error occurred reading the results. Is the document store working?")
|
274 |
-
except Exception as e:
|
275 |
-
logging.exception(e)
|
276 |
-
if "The server is busy processing requests" in str(e) or "503" in str(e):
|
277 |
-
st.error("π§βπΎ All our workers are busy! Try again later.")
|
278 |
-
else:
|
279 |
-
st.error(f"π An error occurred during the request. {str(e)}")
|
280 |
-
|
281 |
-
|
282 |
-
if st.session_state.results:
|
283 |
-
|
284 |
-
st.write("## Results:")
|
285 |
-
|
286 |
-
for count, result in enumerate(st.session_state.results['answers']):
|
287 |
-
answer, context = result.answer, result.context
|
288 |
-
start_idx = context.find(answer)
|
289 |
-
end_idx = start_idx + len(answer)
|
290 |
-
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
|
291 |
-
try:
|
292 |
-
source = f"[{result.meta['Title']}]({result.meta['link']})"
|
293 |
-
st.write(
|
294 |
-
markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
295 |
-
unsafe_allow_html=True,
|
296 |
-
)
|
297 |
-
except:
|
298 |
-
filename = result.meta.get('filename', "")
|
299 |
-
st.write(
|
300 |
-
markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
301 |
-
unsafe_allow_html=True,
|
302 |
-
)
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import sys
|
6 |
+
import uuid
|
7 |
+
from json import JSONDecodeError
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import pinecone
|
12 |
+
import streamlit as st
|
13 |
+
from annotated_text import annotation
|
14 |
+
from haystack import Document
|
15 |
+
from haystack.document_stores import PineconeDocumentStore
|
16 |
+
from haystack.nodes import (
|
17 |
+
DocxToTextConverter,
|
18 |
+
EmbeddingRetriever,
|
19 |
+
FARMReader,
|
20 |
+
FileTypeClassifier,
|
21 |
+
PDFToTextConverter,
|
22 |
+
PreProcessor,
|
23 |
+
TextConverter,
|
24 |
+
)
|
25 |
+
from haystack.pipelines import ExtractiveQAPipeline, Pipeline
|
26 |
+
from markdown import markdown
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
|
29 |
+
index_name = "qa_demo"
|
30 |
+
|
31 |
+
|
32 |
+
# connect to pinecone environment
|
33 |
+
pinecone.init(
|
34 |
+
api_key=st.secrets["pinecone_apikey"],
|
35 |
+
# environment="us-west1-gcp"
|
36 |
+
)
|
37 |
+
index_name = "qa-demo"
|
38 |
+
|
39 |
+
preprocessor = PreProcessor(
|
40 |
+
clean_empty_lines=True,
|
41 |
+
clean_whitespace=True,
|
42 |
+
clean_header_footer=False,
|
43 |
+
split_by="word",
|
44 |
+
split_length=100,
|
45 |
+
split_respect_sentence_boundary=True
|
46 |
+
)
|
47 |
+
file_type_classifier = FileTypeClassifier()
|
48 |
+
text_converter = TextConverter()
|
49 |
+
pdf_converter = PDFToTextConverter()
|
50 |
+
docx_converter = DocxToTextConverter()
|
51 |
+
|
52 |
+
# check if the abstractive-question-answering index exists
|
53 |
+
if index_name not in pinecone.list_indexes():
|
54 |
+
# create the index if it does not exist
|
55 |
+
pinecone.create_index(
|
56 |
+
index_name,
|
57 |
+
dimension=768,
|
58 |
+
metric="cosine"
|
59 |
+
)
|
60 |
+
|
61 |
+
# connect to abstractive-question-answering index we created
|
62 |
+
index = pinecone.Index(index_name)
|
63 |
+
|
64 |
+
FILE_UPLOAD_PATH= "./data/uploads/"
|
65 |
+
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
|
66 |
+
# @st.cache
|
67 |
+
def create_doc_store():
|
68 |
+
document_store = PineconeDocumentStore(
|
69 |
+
api_key= st.secrets["pinecone_apikey"],
|
70 |
+
index=index_name,
|
71 |
+
similarity="cosine",
|
72 |
+
embedding_dim=768
|
73 |
+
)
|
74 |
+
return document_store
|
75 |
+
|
76 |
+
# @st.cache
|
77 |
+
# def create_pipe(document_store):
|
78 |
+
# retriever = EmbeddingRetriever(
|
79 |
+
# document_store=document_store,
|
80 |
+
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
|
81 |
+
# model_format="sentence_transformers",
|
82 |
+
# )
|
83 |
+
# reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
84 |
+
# pipe = ExtractiveQAPipeline(reader, retriever)
|
85 |
+
# return pipe
|
86 |
+
|
87 |
+
def query(pipe, question, top_k_reader, top_k_retriever):
|
88 |
+
res = pipe.run(
|
89 |
+
query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}}
|
90 |
+
)
|
91 |
+
answer_df = []
|
92 |
+
# for r in res['answers']:
|
93 |
+
# ans_dict = res['answers'][0].meta
|
94 |
+
# ans_dict["answer"] = r.context
|
95 |
+
# answer_df.append(ans_dict)
|
96 |
+
# result = pd.DataFrame(answer_df)
|
97 |
+
# result.columns = ["Source","Title","Year","Link","Answer"]
|
98 |
+
# result[["Answer","Link","Source","Title","Year"]]
|
99 |
+
return res
|
100 |
+
|
101 |
+
document_store = create_doc_store()
|
102 |
+
# pipe = create_pipe(document_store)
|
103 |
+
retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
104 |
+
retriever = EmbeddingRetriever(
|
105 |
+
document_store=document_store,
|
106 |
+
embedding_model=retriever_model,
|
107 |
+
model_format="sentence_transformers",
|
108 |
+
)
|
109 |
+
# load the retriever model from huggingface model hub
|
110 |
+
sentence_encoder = SentenceTransformer(retriever_model)
|
111 |
+
|
112 |
+
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
|
113 |
+
pipe = ExtractiveQAPipeline(reader, retriever)
|
114 |
+
|
115 |
+
|
116 |
+
indexing_pipeline_with_classification = Pipeline()
|
117 |
+
indexing_pipeline_with_classification.add_node(
|
118 |
+
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
|
119 |
+
)
|
120 |
+
indexing_pipeline_with_classification.add_node(
|
121 |
+
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
|
122 |
+
)
|
123 |
+
indexing_pipeline_with_classification.add_node(
|
124 |
+
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
|
125 |
+
)
|
126 |
+
indexing_pipeline_with_classification.add_node(
|
127 |
+
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
|
128 |
+
)
|
129 |
+
indexing_pipeline_with_classification.add_node(
|
130 |
+
component=preprocessor,
|
131 |
+
name="Preprocessor",
|
132 |
+
inputs=["TextConverter", "PdfConverter", "DocxConverter"],
|
133 |
+
)
|
134 |
+
|
135 |
+
def set_state_if_absent(key, value):
|
136 |
+
if key not in st.session_state:
|
137 |
+
st.session_state[key] = value
|
138 |
+
|
139 |
+
# Adjust to a question that you would like users to see in the search bar when they load the UI:
|
140 |
+
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
|
141 |
+
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")
|
142 |
+
|
143 |
+
# Sliders
|
144 |
+
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
145 |
+
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
|
146 |
+
|
147 |
+
|
148 |
+
st.set_page_config(page_title="GPT3 and Langchain Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")
|
149 |
+
|
150 |
+
# Persistent state
|
151 |
+
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
|
152 |
+
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
|
153 |
+
set_state_if_absent("results", None)
|
154 |
+
|
155 |
+
|
156 |
+
# Small callback to reset the interface in case the text of the question changes
|
157 |
+
def reset_results(*args):
|
158 |
+
st.session_state.answer = None
|
159 |
+
st.session_state.results = None
|
160 |
+
st.session_state.raw_json = None
|
161 |
+
|
162 |
+
# Title
|
163 |
+
st.write("# GPT3 and Langchain Demo")
|
164 |
+
st.markdown(
|
165 |
+
"""
|
166 |
+
This demo takes its data from the documents uploaded to the Pinecone index through this app. \n
|
167 |
+
Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n
|
168 |
+
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
|
169 |
+
""",
|
170 |
+
unsafe_allow_html=True,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Sidebar
|
174 |
+
st.sidebar.header("Options")
|
175 |
+
st.sidebar.write("## File Upload:")
|
176 |
+
data_files = st.sidebar.file_uploader(
|
177 |
+
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
|
178 |
+
)
|
179 |
+
ALL_FILES = []
|
180 |
+
META_DATA = []
|
181 |
+
for data_file in data_files:
|
182 |
+
# Upload file
|
183 |
+
if data_file:
|
184 |
+
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
|
185 |
+
with open(file_path, "wb") as f:
|
186 |
+
f.write(data_file.getbuffer())
|
187 |
+
ALL_FILES.append(file_path)
|
188 |
+
st.sidebar.write(str(data_file.name) + " β
")
|
189 |
+
META_DATA.append({"filename":data_file.name})
|
190 |
+
|
191 |
+
|
192 |
+
if len(ALL_FILES) > 0:
|
193 |
+
# document_store.update_embeddings(retriever, update_existing_embeddings=False)
|
194 |
+
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
|
195 |
+
index_name = "qa_demo"
|
196 |
+
# we will use batches of 64
|
197 |
+
batch_size = 64
|
198 |
+
# docs = docs['documents']
|
199 |
+
with st.spinner(
|
200 |
+
"π§ Performing indexing of uplaoded documents... \n "
|
201 |
+
):
|
202 |
+
for i in range(0, len(docs), batch_size):
|
203 |
+
# find end of batch
|
204 |
+
i_end = min(i+batch_size, len(docs))
|
205 |
+
# extract batch
|
206 |
+
batch = [doc.content for doc in docs[i:i_end]]
|
207 |
+
# generate embeddings for batch
|
208 |
+
emb = sentence_encoder.encode(batch).tolist()
|
209 |
+
# get metadata
|
210 |
+
meta = [doc.meta for doc in docs[i:i_end]]
|
211 |
+
# create unique IDs
|
212 |
+
ids = [doc.id for doc in docs[i:i_end]]
|
213 |
+
# add all to upsert list
|
214 |
+
to_upsert = list(zip(ids, emb, meta))
|
215 |
+
# upsert/insert these records to pinecone
|
216 |
+
_ = index.upsert(vectors=to_upsert)
|
217 |
+
|
218 |
+
top_k_reader = st.sidebar.slider(
|
219 |
+
"Max. number of answers",
|
220 |
+
min_value=1,
|
221 |
+
max_value=10,
|
222 |
+
value=DEFAULT_NUMBER_OF_ANSWERS,
|
223 |
+
step=1,
|
224 |
+
on_change=reset_results,
|
225 |
+
)
|
226 |
+
top_k_retriever = st.sidebar.slider(
|
227 |
+
"Max. number of documents from retriever",
|
228 |
+
min_value=1,
|
229 |
+
max_value=10,
|
230 |
+
value=DEFAULT_DOCS_FROM_RETRIEVER,
|
231 |
+
step=1,
|
232 |
+
on_change=reset_results,
|
233 |
+
)
|
234 |
+
# data_files = st.file_uploader(
|
235 |
+
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
|
236 |
+
# )
|
237 |
+
# for data_file in data_files:
|
238 |
+
# # Upload file
|
239 |
+
# if data_file:
|
240 |
+
# raw_json = upload_doc(data_file)
|
241 |
+
|
242 |
+
question = st.text_input(
|
243 |
+
value=st.session_state.question,
|
244 |
+
max_chars=100,
|
245 |
+
on_change=reset_results,
|
246 |
+
label="question",
|
247 |
+
label_visibility="hidden",
|
248 |
+
)
|
249 |
+
col1, col2 = st.columns(2)
|
250 |
+
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
251 |
+
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
|
252 |
+
|
253 |
+
# Run button
|
254 |
+
run_pressed = col1.button("Run")
|
255 |
+
if run_pressed:
|
256 |
+
|
257 |
+
run_query = (
|
258 |
+
run_pressed or question != st.session_state.question
|
259 |
+
)
|
260 |
+
# Get results for query
|
261 |
+
if run_query and question:
|
262 |
+
reset_results()
|
263 |
+
st.session_state.question = question
|
264 |
+
|
265 |
+
with st.spinner(
|
266 |
+
"π§ Performing neural search on documents... \n "
|
267 |
+
):
|
268 |
+
try:
|
269 |
+
st.session_state.results = query(
|
270 |
+
pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
|
271 |
+
)
|
272 |
+
except JSONDecodeError as je:
|
273 |
+
st.error("π An error occurred reading the results. Is the document store working?")
|
274 |
+
except Exception as e:
|
275 |
+
logging.exception(e)
|
276 |
+
if "The server is busy processing requests" in str(e) or "503" in str(e):
|
277 |
+
st.error("π§βπΎ All our workers are busy! Try again later.")
|
278 |
+
else:
|
279 |
+
st.error(f"π An error occurred during the request. {str(e)}")
|
280 |
+
|
281 |
+
|
282 |
+
if st.session_state.results:
|
283 |
+
|
284 |
+
st.write("## Results:")
|
285 |
+
|
286 |
+
for count, result in enumerate(st.session_state.results['answers']):
|
287 |
+
answer, context = result.answer, result.context
|
288 |
+
start_idx = context.find(answer)
|
289 |
+
end_idx = start_idx + len(answer)
|
290 |
+
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
|
291 |
+
try:
|
292 |
+
source = f"[{result.meta['Title']}]({result.meta['link']})"
|
293 |
+
st.write(
|
294 |
+
markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
295 |
+
unsafe_allow_html=True,
|
296 |
+
)
|
297 |
+
except:
|
298 |
+
filename = result.meta.get('filename', "")
|
299 |
+
st.write(
|
300 |
+
markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
|
301 |
+
unsafe_allow_html=True,
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
|