Abhilashvj commited on
Commit
610385f
β€’
1 Parent(s): ab8dd8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +305 -305
app.py CHANGED
@@ -1,305 +1,305 @@
1
- import json
2
- import logging
3
- import os
4
- import shutil
5
- import sys
6
- import uuid
7
- from json import JSONDecodeError
8
- from pathlib import Path
9
-
10
- import pandas as pd
11
- import pinecone
12
- import streamlit as st
13
- from annotated_text import annotation
14
- from haystack import Document
15
- from haystack.document_stores import PineconeDocumentStore
16
- from haystack.nodes import (
17
- DocxToTextConverter,
18
- EmbeddingRetriever,
19
- FARMReader,
20
- FileTypeClassifier,
21
- PDFToTextConverter,
22
- PreProcessor,
23
- TextConverter,
24
- )
25
- from haystack.pipelines import ExtractiveQAPipeline, Pipeline
26
- from markdown import markdown
27
- from sentence_transformers import SentenceTransformer
28
-
29
- index_name = "qa_demo"
30
-
31
-
32
- # connect to pinecone environment
33
- pinecone.init(
34
- api_key=st.secrets["pinecone_apikey"],
35
- # environment="us-west1-gcp"
36
- )
37
- index_name = "qa-demo"
38
-
39
- preprocessor = PreProcessor(
40
- clean_empty_lines=True,
41
- clean_whitespace=True,
42
- clean_header_footer=False,
43
- split_by="word",
44
- split_length=100,
45
- split_respect_sentence_boundary=True
46
- )
47
- file_type_classifier = FileTypeClassifier()
48
- text_converter = TextConverter()
49
- pdf_converter = PDFToTextConverter()
50
- docx_converter = DocxToTextConverter()
51
-
52
- # check if the abstractive-question-answering index exists
53
- if index_name not in pinecone.list_indexes():
54
- # create the index if it does not exist
55
- pinecone.create_index(
56
- index_name,
57
- dimension=768,
58
- metric="cosine"
59
- )
60
-
61
- # connect to abstractive-question-answering index we created
62
- index = pinecone.Index(index_name)
63
-
64
- FILE_UPLOAD_PATH= "./data/uploads/"
65
- os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
66
- # @st.cache
67
- def create_doc_store():
68
- document_store = PineconeDocumentStore(
69
- api_key= st.secrets["pinecone_apikey"],
70
- index=index_name,
71
- similarity="cosine",
72
- embedding_dim=768
73
- )
74
- return document_store
75
-
76
- # @st.cache
77
- # def create_pipe(document_store):
78
- # retriever = EmbeddingRetriever(
79
- # document_store=document_store,
80
- # embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
81
- # model_format="sentence_transformers",
82
- # )
83
- # reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
84
- # pipe = ExtractiveQAPipeline(reader, retriever)
85
- # return pipe
86
-
87
- def query(pipe, question, top_k_reader, top_k_retriever):
88
- res = pipe.run(
89
- query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}}
90
- )
91
- answer_df = []
92
- # for r in res['answers']:
93
- # ans_dict = res['answers'][0].meta
94
- # ans_dict["answer"] = r.context
95
- # answer_df.append(ans_dict)
96
- # result = pd.DataFrame(answer_df)
97
- # result.columns = ["Source","Title","Year","Link","Answer"]
98
- # result[["Answer","Link","Source","Title","Year"]]
99
- return res
100
-
101
- document_store = create_doc_store()
102
- # pipe = create_pipe(document_store)
103
- retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
104
- retriever = EmbeddingRetriever(
105
- document_store=document_store,
106
- embedding_model=retriever_model,
107
- model_format="sentence_transformers",
108
- )
109
- # load the retriever model from huggingface model hub
110
- sentence_encoder = SentenceTransformer(retriever_model)
111
-
112
- reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
113
- pipe = ExtractiveQAPipeline(reader, retriever)
114
-
115
-
116
- indexing_pipeline_with_classification = Pipeline()
117
- indexing_pipeline_with_classification.add_node(
118
- component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
119
- )
120
- indexing_pipeline_with_classification.add_node(
121
- component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
122
- )
123
- indexing_pipeline_with_classification.add_node(
124
- component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
125
- )
126
- indexing_pipeline_with_classification.add_node(
127
- component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
128
- )
129
- indexing_pipeline_with_classification.add_node(
130
- component=preprocessor,
131
- name="Preprocessor",
132
- inputs=["TextConverter", "PdfConverter", "DocxConverter"],
133
- )
134
-
135
- def set_state_if_absent(key, value):
136
- if key not in st.session_state:
137
- st.session_state[key] = value
138
-
139
- # Adjust to a question that you would like users to see in the search bar when they load the UI:
140
- DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
141
- DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")
142
-
143
- # Sliders
144
- DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
145
- DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
146
-
147
-
148
- st.set_page_config(page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")
149
-
150
- # Persistent state
151
- set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
152
- set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
153
- set_state_if_absent("results", None)
154
-
155
-
156
- # Small callback to reset the interface in case the text of the question changes
157
- def reset_results(*args):
158
- st.session_state.answer = None
159
- st.session_state.results = None
160
- st.session_state.raw_json = None
161
-
162
- # Title
163
- st.write("# Haystack Search Demo")
164
- st.markdown(
165
- """
166
- This demo takes its data from two sample data csv with statistics on various topics. \n
167
- Ask any question on this topic and see if Haystack can find the correct answer to your query! \n
168
- *Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
169
- """,
170
- unsafe_allow_html=True,
171
- )
172
-
173
- # Sidebar
174
- st.sidebar.header("Options")
175
- st.sidebar.write("## File Upload:")
176
- data_files = st.sidebar.file_uploader(
177
- "upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
178
- )
179
- ALL_FILES = []
180
- META_DATA = []
181
- for data_file in data_files:
182
- # Upload file
183
- if data_file:
184
- file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
185
- with open(file_path, "wb") as f:
186
- f.write(data_file.getbuffer())
187
- ALL_FILES.append(file_path)
188
- st.sidebar.write(str(data_file.name) + "    βœ… ")
189
- META_DATA.append({"filename":data_file.name})
190
-
191
-
192
- if len(ALL_FILES) > 0:
193
- # document_store.update_embeddings(retriever, update_existing_embeddings=False)
194
- docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
195
- index_name = "qa_demo"
196
- # we will use batches of 64
197
- batch_size = 64
198
- # docs = docs['documents']
199
- with st.spinner(
200
- "🧠    Performing indexing of uplaoded documents... \n "
201
- ):
202
- for i in range(0, len(docs), batch_size):
203
- # find end of batch
204
- i_end = min(i+batch_size, len(docs))
205
- # extract batch
206
- batch = [doc.content for doc in docs[i:i_end]]
207
- # generate embeddings for batch
208
- emb = sentence_encoder.encode(batch).tolist()
209
- # get metadata
210
- meta = [doc.meta for doc in docs[i:i_end]]
211
- # create unique IDs
212
- ids = [doc.id for doc in docs[i:i_end]]
213
- # add all to upsert list
214
- to_upsert = list(zip(ids, emb, meta))
215
- # upsert/insert these records to pinecone
216
- _ = index.upsert(vectors=to_upsert)
217
-
218
- top_k_reader = st.sidebar.slider(
219
- "Max. number of answers",
220
- min_value=1,
221
- max_value=10,
222
- value=DEFAULT_NUMBER_OF_ANSWERS,
223
- step=1,
224
- on_change=reset_results,
225
- )
226
- top_k_retriever = st.sidebar.slider(
227
- "Max. number of documents from retriever",
228
- min_value=1,
229
- max_value=10,
230
- value=DEFAULT_DOCS_FROM_RETRIEVER,
231
- step=1,
232
- on_change=reset_results,
233
- )
234
- # data_files = st.file_uploader(
235
- # "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
236
- # )
237
- # for data_file in data_files:
238
- # # Upload file
239
- # if data_file:
240
- # raw_json = upload_doc(data_file)
241
-
242
- question = st.text_input(
243
- value=st.session_state.question,
244
- max_chars=100,
245
- on_change=reset_results,
246
- label="question",
247
- label_visibility="hidden",
248
- )
249
- col1, col2 = st.columns(2)
250
- col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
251
- col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
252
-
253
- # Run button
254
- run_pressed = col1.button("Run")
255
- if run_pressed:
256
-
257
- run_query = (
258
- run_pressed or question != st.session_state.question
259
- )
260
- # Get results for query
261
- if run_query and question:
262
- reset_results()
263
- st.session_state.question = question
264
-
265
- with st.spinner(
266
- "🧠 &nbsp;&nbsp; Performing neural search on documents... \n "
267
- ):
268
- try:
269
- st.session_state.results = query(
270
- pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
271
- )
272
- except JSONDecodeError as je:
273
- st.error("πŸ‘“ &nbsp;&nbsp; An error occurred reading the results. Is the document store working?")
274
- except Exception as e:
275
- logging.exception(e)
276
- if "The server is busy processing requests" in str(e) or "503" in str(e):
277
- st.error("πŸ§‘β€πŸŒΎ &nbsp;&nbsp; All our workers are busy! Try again later.")
278
- else:
279
- st.error(f"🐞 &nbsp;&nbsp; An error occurred during the request. {str(e)}")
280
-
281
-
282
- if st.session_state.results:
283
-
284
- st.write("## Results:")
285
-
286
- for count, result in enumerate(st.session_state.results['answers']):
287
- answer, context = result.answer, result.context
288
- start_idx = context.find(answer)
289
- end_idx = start_idx + len(answer)
290
- # Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
291
- try:
292
- source = f"[{result.meta['Title']}]({result.meta['link']})"
293
- st.write(
294
- markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
295
- unsafe_allow_html=True,
296
- )
297
- except:
298
- filename = result.meta.get('filename', "")
299
- st.write(
300
- markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
301
- unsafe_allow_html=True,
302
- )
303
-
304
-
305
-
 
1
+ import json
2
+ import logging
3
+ import os
4
+ import shutil
5
+ import sys
6
+ import uuid
7
+ from json import JSONDecodeError
8
+ from pathlib import Path
9
+
10
+ import pandas as pd
11
+ import pinecone
12
+ import streamlit as st
13
+ from annotated_text import annotation
14
+ from haystack import Document
15
+ from haystack.document_stores import PineconeDocumentStore
16
+ from haystack.nodes import (
17
+ DocxToTextConverter,
18
+ EmbeddingRetriever,
19
+ FARMReader,
20
+ FileTypeClassifier,
21
+ PDFToTextConverter,
22
+ PreProcessor,
23
+ TextConverter,
24
+ )
25
+ from haystack.pipelines import ExtractiveQAPipeline, Pipeline
26
+ from markdown import markdown
27
+ from sentence_transformers import SentenceTransformer
28
+
29
+ index_name = "qa_demo"
30
+
31
+
32
+ # connect to pinecone environment
33
+ pinecone.init(
34
+ api_key=st.secrets["pinecone_apikey"],
35
+ # environment="us-west1-gcp"
36
+ )
37
+ index_name = "qa-demo"
38
+
39
+ preprocessor = PreProcessor(
40
+ clean_empty_lines=True,
41
+ clean_whitespace=True,
42
+ clean_header_footer=False,
43
+ split_by="word",
44
+ split_length=100,
45
+ split_respect_sentence_boundary=True
46
+ )
47
+ file_type_classifier = FileTypeClassifier()
48
+ text_converter = TextConverter()
49
+ pdf_converter = PDFToTextConverter()
50
+ docx_converter = DocxToTextConverter()
51
+
52
+ # check if the abstractive-question-answering index exists
53
+ if index_name not in pinecone.list_indexes():
54
+ # create the index if it does not exist
55
+ pinecone.create_index(
56
+ index_name,
57
+ dimension=768,
58
+ metric="cosine"
59
+ )
60
+
61
+ # connect to abstractive-question-answering index we created
62
+ index = pinecone.Index(index_name)
63
+
64
+ FILE_UPLOAD_PATH= "./data/uploads/"
65
+ os.makedirs(FILE_UPLOAD_PATH, exist_ok=True)
66
+ # @st.cache
67
+ def create_doc_store():
68
+ document_store = PineconeDocumentStore(
69
+ api_key= st.secrets["pinecone_apikey"],
70
+ index=index_name,
71
+ similarity="cosine",
72
+ embedding_dim=768
73
+ )
74
+ return document_store
75
+
76
+ # @st.cache
77
+ # def create_pipe(document_store):
78
+ # retriever = EmbeddingRetriever(
79
+ # document_store=document_store,
80
+ # embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
81
+ # model_format="sentence_transformers",
82
+ # )
83
+ # reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
84
+ # pipe = ExtractiveQAPipeline(reader, retriever)
85
+ # return pipe
86
+
87
+ def query(pipe, question, top_k_reader, top_k_retriever):
88
+ res = pipe.run(
89
+ query=question, params={"Retriever": {"top_k": top_k_retriever}, "Reader": {"top_k": top_k_reader}}
90
+ )
91
+ answer_df = []
92
+ # for r in res['answers']:
93
+ # ans_dict = res['answers'][0].meta
94
+ # ans_dict["answer"] = r.context
95
+ # answer_df.append(ans_dict)
96
+ # result = pd.DataFrame(answer_df)
97
+ # result.columns = ["Source","Title","Year","Link","Answer"]
98
+ # result[["Answer","Link","Source","Title","Year"]]
99
+ return res
100
+
101
+ document_store = create_doc_store()
102
+ # pipe = create_pipe(document_store)
103
+ retriever_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
104
+ retriever = EmbeddingRetriever(
105
+ document_store=document_store,
106
+ embedding_model=retriever_model,
107
+ model_format="sentence_transformers",
108
+ )
109
+ # load the retriever model from huggingface model hub
110
+ sentence_encoder = SentenceTransformer(retriever_model)
111
+
112
+ reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=False)
113
+ pipe = ExtractiveQAPipeline(reader, retriever)
114
+
115
+
116
+ indexing_pipeline_with_classification = Pipeline()
117
+ indexing_pipeline_with_classification.add_node(
118
+ component=file_type_classifier, name="FileTypeClassifier", inputs=["File"]
119
+ )
120
+ indexing_pipeline_with_classification.add_node(
121
+ component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"]
122
+ )
123
+ indexing_pipeline_with_classification.add_node(
124
+ component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"]
125
+ )
126
+ indexing_pipeline_with_classification.add_node(
127
+ component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"]
128
+ )
129
+ indexing_pipeline_with_classification.add_node(
130
+ component=preprocessor,
131
+ name="Preprocessor",
132
+ inputs=["TextConverter", "PdfConverter", "DocxConverter"],
133
+ )
134
+
135
+ def set_state_if_absent(key, value):
136
+ if key not in st.session_state:
137
+ st.session_state[key] = value
138
+
139
+ # Adjust to a question that you would like users to see in the search bar when they load the UI:
140
+ DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.")
141
+ DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer")
142
+
143
+ # Sliders
144
+ DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
145
+ DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3"))
146
+
147
+
148
+ st.set_page_config(page_title="GPT3 and Langchain Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")
149
+
150
+ # Persistent state
151
+ set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP)
152
+ set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP)
153
+ set_state_if_absent("results", None)
154
+
155
+
156
+ # Small callback to reset the interface in case the text of the question changes
157
+ def reset_results(*args):
158
+ st.session_state.answer = None
159
+ st.session_state.results = None
160
+ st.session_state.raw_json = None
161
+
162
+ # Title
163
+ st.write("# GPT3 and Langchain Demo")
164
+ st.markdown(
165
+ """
166
+ This demo takes its data from the documents uploaded to the Pinecone index through this app. \n
167
+ Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n
168
+ *Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you.
169
+ """,
170
+ unsafe_allow_html=True,
171
+ )
172
+
173
+ # Sidebar
174
+ st.sidebar.header("Options")
175
+ st.sidebar.write("## File Upload:")
176
+ data_files = st.sidebar.file_uploader(
177
+ "upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
178
+ )
179
+ ALL_FILES = []
180
+ META_DATA = []
181
+ for data_file in data_files:
182
+ # Upload file
183
+ if data_file:
184
+ file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}"
185
+ with open(file_path, "wb") as f:
186
+ f.write(data_file.getbuffer())
187
+ ALL_FILES.append(file_path)
188
+ st.sidebar.write(str(data_file.name) + " &nbsp;&nbsp; βœ… ")
189
+ META_DATA.append({"filename":data_file.name})
190
+
191
+
192
+ if len(ALL_FILES) > 0:
193
+ # document_store.update_embeddings(retriever, update_existing_embeddings=False)
194
+ docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
195
+ index_name = "qa_demo"
196
+ # we will use batches of 64
197
+ batch_size = 64
198
+ # docs = docs['documents']
199
+ with st.spinner(
200
+ "🧠 &nbsp;&nbsp; Performing indexing of uplaoded documents... \n "
201
+ ):
202
+ for i in range(0, len(docs), batch_size):
203
+ # find end of batch
204
+ i_end = min(i+batch_size, len(docs))
205
+ # extract batch
206
+ batch = [doc.content for doc in docs[i:i_end]]
207
+ # generate embeddings for batch
208
+ emb = sentence_encoder.encode(batch).tolist()
209
+ # get metadata
210
+ meta = [doc.meta for doc in docs[i:i_end]]
211
+ # create unique IDs
212
+ ids = [doc.id for doc in docs[i:i_end]]
213
+ # add all to upsert list
214
+ to_upsert = list(zip(ids, emb, meta))
215
+ # upsert/insert these records to pinecone
216
+ _ = index.upsert(vectors=to_upsert)
217
+
218
+ top_k_reader = st.sidebar.slider(
219
+ "Max. number of answers",
220
+ min_value=1,
221
+ max_value=10,
222
+ value=DEFAULT_NUMBER_OF_ANSWERS,
223
+ step=1,
224
+ on_change=reset_results,
225
+ )
226
+ top_k_retriever = st.sidebar.slider(
227
+ "Max. number of documents from retriever",
228
+ min_value=1,
229
+ max_value=10,
230
+ value=DEFAULT_DOCS_FROM_RETRIEVER,
231
+ step=1,
232
+ on_change=reset_results,
233
+ )
234
+ # data_files = st.file_uploader(
235
+ # "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden"
236
+ # )
237
+ # for data_file in data_files:
238
+ # # Upload file
239
+ # if data_file:
240
+ # raw_json = upload_doc(data_file)
241
+
242
+ question = st.text_input(
243
+ value=st.session_state.question,
244
+ max_chars=100,
245
+ on_change=reset_results,
246
+ label="question",
247
+ label_visibility="hidden",
248
+ )
249
+ col1, col2 = st.columns(2)
250
+ col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
251
+ col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
252
+
253
+ # Run button
254
+ run_pressed = col1.button("Run")
255
+ if run_pressed:
256
+
257
+ run_query = (
258
+ run_pressed or question != st.session_state.question
259
+ )
260
+ # Get results for query
261
+ if run_query and question:
262
+ reset_results()
263
+ st.session_state.question = question
264
+
265
+ with st.spinner(
266
+ "🧠 &nbsp;&nbsp; Performing neural search on documents... \n "
267
+ ):
268
+ try:
269
+ st.session_state.results = query(
270
+ pipe, question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever
271
+ )
272
+ except JSONDecodeError as je:
273
+ st.error("πŸ‘“ &nbsp;&nbsp; An error occurred reading the results. Is the document store working?")
274
+ except Exception as e:
275
+ logging.exception(e)
276
+ if "The server is busy processing requests" in str(e) or "503" in str(e):
277
+ st.error("πŸ§‘β€πŸŒΎ &nbsp;&nbsp; All our workers are busy! Try again later.")
278
+ else:
279
+ st.error(f"🐞 &nbsp;&nbsp; An error occurred during the request. {str(e)}")
280
+
281
+
282
+ if st.session_state.results:
283
+
284
+ st.write("## Results:")
285
+
286
+ for count, result in enumerate(st.session_state.results['answers']):
287
+ answer, context = result.answer, result.context
288
+ start_idx = context.find(answer)
289
+ end_idx = start_idx + len(answer)
290
+ # Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
291
+ try:
292
+ source = f"[{result.meta['Title']}]({result.meta['link']})"
293
+ st.write(
294
+ markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
295
+ unsafe_allow_html=True,
296
+ )
297
+ except:
298
+ filename = result.meta.get('filename', "")
299
+ st.write(
300
+ markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '),
301
+ unsafe_allow_html=True,
302
+ )
303
+
304
+
305
+