File size: 12,939 Bytes
632338f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f0383
 
632338f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24f789
632338f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from email.utils import parseaddr
from huggingface_hub import HfApi
import os
import datetime
import pandas as pd
import json

import evaluate as nlp_evaluate
import re
import sqlite3
import random
from tqdm import tqdm
import sys
import numpy as np

from sqlparse import parse

random.seed(10001)

bleu = nlp_evaluate.load("bleu")
rouge = nlp_evaluate.load('rouge')


LEADERBOARD_PATH = "Exploration-Lab/BookSQL-Leaderboard"
RESULTS_PATH = "Exploration-Lab/BookSQL-Leaderboard"
api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
YEAR_VERSION = "2024"

sqlite_path = "accounting/accounting_for_testing.sqlite"



def format_error(msg):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"


def format_warning(msg):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"


def format_log(msg):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def input_verification(method_name, url, path_to_file, organisation, mail):
    for input in [method_name, url, path_to_file, organisation, mail]:
        if input == "":
            return format_warning("Please fill all the fields.")

    # Very basic email parsing
    _, parsed_mail = parseaddr(mail)
    if not "@" in parsed_mail:
        return format_warning("Please provide a valid email adress.")

    if path_to_file is None:
        return format_warning("Please attach a file.")

    return parsed_mail

def replace_current_date_and_now(_sql, _date):
    _sql = _sql.replace('current_date', "\'"+_date+"\'")
    _sql = _sql.replace(', now', ", \'"+_date+"\'")
    return _sql

def remove_gold_Non_exec(data,df1, sqlite_path):

    con = sqlite3.connect(sqlite_path)
    cur = con.cursor()

    out, non_exec=[], []
    new_df = df1.copy()
    new_df.loc[:, 'Exec/Non-Exec'] = 0
    for i,s in tqdm(enumerate(data)):
        _sql = str(s).replace('"', "'").lower()
        _sql = replace_current_date_and_now(_sql, '2022-06-01')
        _sql = replace_percent_symbol_y(_sql)
        try:
            cur.execute(_sql)
            res = cur.fetchall()
            out.append(i)
        except:
            non_exec.append(i)
            # print("_sql: ", _sql)

    new_df.loc[out, 'Exec/Non-Exec'] = 1
    con.close()
    return out, non_exec, new_df

def remove_data_from_index(data, ind_list):
    new_data=[]
    for i in ind_list:
        new_data.append(data[i])
    return new_data

def parse_query(query):
    parsed = parse(query)[0]
    return parsed

def normalize_query(query):
    # Remove comments
    query = re.sub(r'--.*', '', query)
    query = re.sub(r'/\*.*?\*/', '', query, flags=re.DOTALL)
    
    # Remove extra whitespace
    query = re.sub(r'\s+', ' ', query)
    
    # Strip leading and trailing whitespace
    query = query.strip()
    
    return query.lower()
    
def get_exec_match_acc(gold, pred):
    assert len(gold)==len(pred)
    correct_sql_count=0
    count=0
    goldd = [re.sub(' +', ' ', str(g).replace("'", '"').lower()) for g in gold]
    predd = [re.sub(' +', ' ', str(p).replace("'", '"').lower()) for p in pred]
    # for g, p in zip(gold, pred):
    #     #extra space, double quotes, lower_case
    #     gg = re.sub(' +', ' ', str(g).replace("'", '"').lower())
    #     gg = re.sub(' +', ' ', str(p).replace("'", '"').lower())
        # if gold==pred:
        #     count+=1

    for q1, q2 in zip(goldd, predd):
        q1 = normalize_query(q1)
        q2 = normalize_query(q2)
        
        parsed_query1 = parse_query(q1)
        parsed_query2 = parse_query(q2)
    
        if str(parsed_query1) == str(parsed_query2):
            correct_sql_count+=1

    return correct_sql_count/len(goldd), 0

def replace_percent_symbol_y(_sql):
    _sql = _sql.replace('%y', "%Y")
    return _sql


def get_exec_results(sqlite_path, scores, df, flag, gold_sql_map_res={}):

    con = sqlite3.connect(sqlite_path)
    cur = con.cursor()

    i,j,count=0,0,0
    out,non_exec={},{}
    new_df = df.copy()
    responses=[]
    for s in tqdm(scores):
        _sql = str(s).replace('"', "'").lower()
        _sql = replace_current_date_and_now(_sql, '2022-06-01')
        _sql = replace_percent_symbol_y(_sql)
        try:
            cur.execute(_sql)
            res = cur.fetchall()
            out[i] = str(res)
        except Exception as err:
            non_exec[i]=err
        i+=1

    if flag=='g': 
        new_df.loc[list(out.keys()), 'GOLD_res'] = list(out.values())
    # assert len(gold_sql_map_res)==count
    if flag=='p':
        new_df.loc[list(out.keys()), 'PRED_res'] = list(out.values())
    if flag=='d':
        new_df.loc[list(out.keys()), 'DEBUG_res'] = list(out.values())

    con.close()
    return out, non_exec, new_df

def get_scores(gold_dict, pred_dict):
    exec_count, non_exec_count=0, 0
    none_count=0
    correct_sql, incorrect_sql = [], []
    for k, res in pred_dict.items():
        if k in gold_dict:
            if gold_dict[k]==str(None) or str(None) in gold_dict[k]: 
                none_count+=1
                continue
            if res==gold_dict[k]:
                exec_count+=1
                correct_sql.append(k)
            else: 
                non_exec_count+=1
                incorrect_sql.append(k)
                
    return exec_count, non_exec_count, none_count, correct_sql, incorrect_sql

def get_total_gold_none_count(gold_dict):
    none_count, ok_count=0, 0
    for k, res in gold_dict.items():
        if res==str(None) or str(None) in res: 
            none_count+=1
        else: ok_count+=1
    return ok_count, none_count


def Evaluate(df):
    # df - [id, pred_sql]
    pred_sql = df['pred_sql'].to_list()
    ids = df['id'].to_list()
    f = open(f"tests/test.json")
    questions_and_ids = json.load(f)
    ts = open(f"tests/test_sql.json")
    gold_sql = json.load(ts)

    assert len(pred_sql) == len(gold_sql)

    gold_sql_list=[]
    pred_sql_list=[]
    questions_list=[]
    for idx, pred in zip(ids, pred_sql):
        ques = questions_and_ids[idx]['Query']
        gd_sql = gold_sql[idx]['SQL']
        gold_sql_list.append(gd_sql)
        pred_sql_list.append(pred)
        questions_list.append(ques)
    
    df = pd.DataFrame({'NLQ':questions_list, 'GOLD SQL':gold_sql_list, 'PREDICTED SQL':pred_sql_list})

    test_size = len(df)

    pred_score = df['PREDICTED SQL'].str.lower().values
    # debug_score = df['DEBUGGED SQL'].str.lower().values
    gold_score1 = df['GOLD SQL'].str.lower().values


    print("Checking non-exec Gold sql query")
    gold_exec, gold_not_exec, new_df = remove_gold_Non_exec(gold_score1, df, sqlite_path)
    print("GOLD Total exec SQL query: {}/{}".format(len(gold_exec), test_size))
    print("GOLD Total non-exec SQL query: {}/{}".format(len(gold_not_exec), test_size))


    prev_non_exec_df = new_df[new_df['Exec/Non-Exec'] == 0]
    new_df = new_df[new_df['Exec/Non-Exec']==1]

    prev_non_exec_df.reset_index(inplace=True)
    new_df.reset_index(inplace=True)

    #Removing Non-exec sql from data
    print(f"Removing {len(gold_not_exec)} non-exec sql query from all Gold/Pred/Debug ")
    gold_score1 = remove_data_from_index(gold_score1, gold_exec)
    pred_score = remove_data_from_index(pred_score, gold_exec)
    # debug_score = remove_data_from_index(debug_score, gold_exec)
    gold_score = [[x] for x in gold_score1]

    assert len(gold_score) == len(pred_score) #== len(debug_score)

    pred_bleu_score  = bleu.compute(predictions=pred_score, references=gold_score)
    pred_rouge_score  = rouge.compute(predictions=pred_score, references=gold_score)
    pred_exact_match, pred_partial_f1_score = get_exec_match_acc(gold_score1, pred_score)

    print("PREDICTED_vs_GOLD Final bleu_score: ", pred_bleu_score['bleu'])
    print("PREDICTED_vs_GOLD Final rouge_score: ", pred_rouge_score['rougeL'])
    print("PREDICTED_vs_GOLD Exact Match Accuracy: ", pred_exact_match)
    # print("PREDICTED_vs_GOLD Partial CM F1 score: ", pred_partial_f1_score)
    print()


    new_df.loc[:, 'GOLD_res'] = str(None)
    new_df.loc[:, 'PRED_res'] = str(None)
    # new_df.loc[:, 'DEBUG_res'] = str(None)

    print("Getting Gold results")
    # gout_res_dict, gnon_exec_err_dict, gold_sql_map_res = get_exec_results(cur, gold_score1, 'g')
    gout_res_dict, gnon_exec_err_dict, new_df = get_exec_results(sqlite_path, gold_score1, new_df, 'g')

    total_gold_ok_count, total_gold_none_count = get_total_gold_none_count(gout_res_dict)
    print("Total Gold None count: ", total_gold_none_count)

    print("Getting Pred results")
    pout_res_dict, pnon_exec_err_dict, new_df = get_exec_results(sqlite_path, pred_score, new_df, 'p')
    # print("Getting Debug results")
    # dout_res_dict, dnon_exec_err_dict = get_exec_results(cur, debug_score, 'd')

    print("GOLD Total exec SQL query: {}/{}".format(len(gold_exec), test_size))
    print("GOLD Total non-exec SQL query: {}/{}".format(len(gold_not_exec), test_size))
    print()
    print("PRED Total exec SQL query: {}/{}".format(len(pout_res_dict), len(pred_score)))
    print("PRED Total non-exec SQL query: {}/{}".format(len(pnon_exec_err_dict), len(pred_score)))
    print()
    # print("DEBUG Total exec SQL query: {}/{}".format(len(dout_res_dict), len(debug_score)))
    # print("DEBUG Total non-exec SQL query: {}/{}".format(len(dnon_exec_err_dict), len(debug_score)))
    # print()
    pred_correct_exec_acc_count, pred_incorrect_exec_acc_count, pred_none_count, pred_correct_sql, pred_incorrect_sql  = get_scores(gout_res_dict, pout_res_dict)
    # debug_correct_exec_acc_count, debug_incorrect_exec_acc_count, debug_none_count, debug_correct_sql, debug_incorrect_sql   = get_scores(gout_res_dict, dout_res_dict)
    # print("PRED_vs_GOLD None_count: ", total_gold_none_count)
    print("PRED_vs_GOLD Correct_Exec_count without None: ", pred_correct_exec_acc_count)
    print("PRED_vs_GOLD Incorrect_Exec_count without None: ", pred_incorrect_exec_acc_count)
    print("PRED_vs_GOLD Exec_Accuracy: ", pred_correct_exec_acc_count/total_gold_ok_count)
    print()

    return pred_exact_match, pred_correct_exec_acc_count/total_gold_ok_count, pred_partial_f1_score, pred_bleu_score['bleu'], pred_rouge_score['rougeL']

def add_new_eval(
    method_name: str,
    url: str,
    path_to_file: str,
    organisation: str,
    mail: str,
):

    parsed_mail = input_verification(
        method_name,
        url,
        path_to_file,
        organisation,
        mail,
    )

    # load the file
    df = pd.read_csv(path_to_file)
    submission_df = pd.read_csv(path_to_file)

    # modify the df to include metadata
    df["Method"] = method_name
    df["url"] = url
    df["organisation"] = organisation
    df["mail"] = parsed_mail
    df["timestamp"] = datetime.datetime.now()

    submission_df = pd.read_csv(path_to_file)
    submission_df["Method"] = method_name
    submission_df["Submitted By"] = organisation
    # upload to spaces using the hf api at

    path_in_repo = f"submissions/{method_name}"
    file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"

    EM, EX, PCM_F1, BLEU, ROUGE = Evaluate(submission_df)
    sub_df = pd.DataFrame()
    sub_df["Method"] = method_name
    sub_df["Submitted By"] = organisation
    sub_df['EMA'] = EM
    sub_df['EX'] = EX
    # submission_df['PCM_F1'] = PCM_F1
    sub_df['BLEU-4'] = BLEU
    sub_df['ROUGE-L'] = ROUGE

    # upload the df to spaces
    import io

    buffer = io.BytesIO()
    df.to_csv(buffer, index=False)  # Write the DataFrame to a buffer in CSV format
    buffer.seek(0)  # Rewind the buffer to the beginning

    api.upload_file(
        repo_id=RESULTS_PATH,
        path_in_repo=f"{path_in_repo}/{file_name}",
        path_or_fileobj=buffer,
        token=TOKEN,
        repo_type="space",
    )
    # read the leaderboard
    leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv")

    # append the new submission_df csv to the leaderboard
    # leaderboard_df = leaderboard_df._append(submission_df)
    leaderboard_df = pd.concat([leaderboard_df, sub_df], ignore_index=True)

    # save the new leaderboard
    # leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False)
    leaderboard_buffer = io.BytesIO()
    leaderboard_df.to_csv(leaderboard_buffer, index=False)
    leaderboard_buffer.seek(0)
    api.upload_file(
        repo_id=LEADERBOARD_PATH,
        path_in_repo=f"submissions/baseline/baseline.csv",
        path_or_fileobj=leaderboard_buffer,
        token=TOKEN,
        repo_type="space",
    )

    return format_log(
        f"Method {method_name} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
    )