import subprocess
import os
import gradio as gr
import torch
import numpy as np
from PIL import Image, ImageEnhance
import spaces
from pymongo import MongoClient
from pymongo.errors import ConnectionError
# MongoDB connection
mongo_client = None
try:
mongo_client = MongoClient("mongodb+srv://skandanv:Skandanv00031@cluster1.aquia.mongodb.net/?retryWrites=true&w=majority&appName=cluster1")
db = mongo_client['minecraft_skin_generator'] # Replace with your database name
collection = db['generated_skins'] # Collection to store generated skins
connection_message = "Connected to MineSkin Server"
except ConnectionError:
connection_message = "Failed to connect to MineSkin Server"
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
MAX_SEED = np.iinfo(np.int32).max
subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"])
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator")
@spaces.GPU(duration=75)
def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, filename, model_3d, verbose):
# Inference
if stable_diffusion_model == '2':
sd_model = "minecraft-skins"
elif stable_diffusion_model == 'xl':
sd_model = "minecraft-skins-sdxl"
inference_command = f"python Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {model_precision_type} {seed} {filename} {'--model_3d' if model_3d else ''} {'--verbose' if verbose else ''}"
os.system(inference_command)
# File paths for generated assets
image_path = os.path.join(f"output_minecraft_skins/{filename}")
model_path = os.path.join(f"output_minecraft_skins/{filename}_3d_model.glb") if model_3d else None
# Prepare data for MongoDB
skin_data = {
'prompt': prompt,
'filename': filename,
'image_path': image_path,
'model_path': model_path,
'num_inference_steps': num_inference_steps,
'guidance_scale': guidance_scale,
'model_precision_type': model_precision_type,
'seed': seed,
'model_3d': model_3d,
'verbose': verbose
}
# Insert generated skin data into MongoDB and show alert if successful
try:
collection.insert_one(skin_data)
success_message = "The Skin has been pushed to MineSkin Server"
alert_type = "success" # Gradio Alert type for success
except Exception as e:
success_message = f"Failed to push skin to database: {e}"
alert_type = "error"
return image_path, model_path, success_message, alert_type
# Define Gradio UI components
prompt = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like")
stable_diffusion_model = gr.Dropdown(['2', 'xl'], value="xl", label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better")
num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1)
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
filename = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the .png", value="output-skin.png")
model_3d = gr.Checkbox(label="See as 3D Model too", info="View the generated skin as a 3D Model too", value=True)
verbose = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False)
# Create the Gradio interface
output_image = gr.Image(label="Generated Minecraft Skin Image Asset", elem_classes="pixelated checkered")
output_model = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model View of the Skin")
output_message = gr.Alert()
gr.Interface(
fn=run_inference,
inputs=[
prompt,
stable_diffusion_model,
num_inference_steps,
guidance_scale,
model_precision_type,
seed,
filename,
model_3d,
verbose
],
outputs=[
output_image,
output_model,
output_message
],
title="Minecraft Skin Generator",
description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version! Github Repository & Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator Credits: [Monadical-SAS](https://github.com/Monadical-SAS/minecraft_skin_generator) (Creators of the model), [Nick088](https://linktr.ee/Nick088) (Improving usage of the model), daroche (helping me fix the 3d model texture issue), [Brottweiler](https://gist.github.com/Brottweiler/483d0856c6692ef70cf90bf1a85ce364)(script to fix the 3d model texture), [not-holar](https://huggingface.co/not-holar) (made the rendering of the image asset in the web ui look pixelated like minecraft and have a checkered background),[meew](https://huggingface.co/spaces/meeww/Minecraft_Skin_Generator/blob/main/models/player_model.glb) (Minecraft Player 3d model) [](https://discord.gg/AQsmBmgEPy)",
css=".pixelated {image-rendering: pixelated} .checkered img {background-image: url('data:image/svg+xml,');background-size: 16px;}"
).launch(show_api=True, share=True)
# Show connection message as alert when the app starts
if mongo_client:
gr.Interface().launch()
output_message.update(value=connection_message, type="info")