import subprocess import os import gradio as gr import torch import numpy as np from PIL import Image, ImageEnhance import spaces from pymongo import MongoClient from pymongo.errors import ConnectionError # MongoDB connection mongo_client = None try: mongo_client = MongoClient("mongodb+srv://skandanv:Skandanv00031@cluster1.aquia.mongodb.net/?retryWrites=true&w=majority&appName=cluster1") db = mongo_client['minecraft_skin_generator'] # Replace with your database name collection = db['generated_skins'] # Collection to store generated skins connection_message = "Connected to MineSkin Server" except ConnectionError: connection_message = "Failed to connect to MineSkin Server" if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") MAX_SEED = np.iinfo(np.int32).max subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"]) os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator") @spaces.GPU(duration=75) def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, filename, model_3d, verbose): # Inference if stable_diffusion_model == '2': sd_model = "minecraft-skins" elif stable_diffusion_model == 'xl': sd_model = "minecraft-skins-sdxl" inference_command = f"python Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {model_precision_type} {seed} {filename} {'--model_3d' if model_3d else ''} {'--verbose' if verbose else ''}" os.system(inference_command) # File paths for generated assets image_path = os.path.join(f"output_minecraft_skins/{filename}") model_path = os.path.join(f"output_minecraft_skins/{filename}_3d_model.glb") if model_3d else None # Prepare data for MongoDB skin_data = { 'prompt': prompt, 'filename': filename, 'image_path': image_path, 'model_path': model_path, 'num_inference_steps': num_inference_steps, 'guidance_scale': guidance_scale, 'model_precision_type': model_precision_type, 'seed': seed, 'model_3d': model_3d, 'verbose': verbose } # Insert generated skin data into MongoDB and show alert if successful try: collection.insert_one(skin_data) success_message = "The Skin has been pushed to MineSkin Server" alert_type = "success" # Gradio Alert type for success except Exception as e: success_message = f"Failed to push skin to database: {e}" alert_type = "error" return image_path, model_path, success_message, alert_type # Define Gradio UI components prompt = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like") stable_diffusion_model = gr.Dropdown(['2', 'xl'], value="xl", label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better") num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1) guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1) model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming") seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") filename = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the .png", value="output-skin.png") model_3d = gr.Checkbox(label="See as 3D Model too", info="View the generated skin as a 3D Model too", value=True) verbose = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False) # Create the Gradio interface output_image = gr.Image(label="Generated Minecraft Skin Image Asset", elem_classes="pixelated checkered") output_model = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model View of the Skin") output_message = gr.Alert() gr.Interface( fn=run_inference, inputs=[ prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, filename, model_3d, verbose ], outputs=[ output_image, output_model, output_message ], title="Minecraft Skin Generator", description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!
Github Repository & Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator
Credits: [Monadical-SAS](https://github.com/Monadical-SAS/minecraft_skin_generator) (Creators of the model), [Nick088](https://linktr.ee/Nick088) (Improving usage of the model), daroche (helping me fix the 3d model texture issue), [Brottweiler](https://gist.github.com/Brottweiler/483d0856c6692ef70cf90bf1a85ce364)(script to fix the 3d model texture), [not-holar](https://huggingface.co/not-holar) (made the rendering of the image asset in the web ui look pixelated like minecraft and have a checkered background),[meew](https://huggingface.co/spaces/meeww/Minecraft_Skin_Generator/blob/main/models/player_model.glb) (Minecraft Player 3d model)
[![Discord](https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge)](https://discord.gg/AQsmBmgEPy)", css=".pixelated {image-rendering: pixelated} .checkered img {background-image: url('data:image/svg+xml,');background-size: 16px;}" ).launch(show_api=True, share=True) # Show connection message as alert when the app starts if mongo_client: gr.Interface().launch() output_message.update(value=connection_message, type="info")