Spaces:
Sleeping
Sleeping
File size: 8,206 Bytes
54ca1ab 967976f 5e19a4e 54ca1ab 4e0308a 54ca1ab 4e0308a 54ca1ab a7d07a4 54ca1ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import re
import nltk
nltk.download('stopwords')
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.util import ngrams
import spacy
# from gensim.summarization.summarizer import summarize
# from gensim.summarization import keywords
# Abstractive Summarisation
from transformers import BartForConditionalGeneration
from transformers import AutoTokenizer
import torch
# Keyword/Keyphrase Extraction
from keybert import _highlight
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer, KeyphraseTfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
import time
import threading
from collections import defaultdict
class AbstractiveSummarizer:
def __init__(self):
self.nlp = spacy.load('en_core_web_lg')
self.summary = ""
def generate_batch(self, text, tokenizer):
"""
Convert the text into multiple sentence parts of appropriate input size to feed to the model
Arguments:
text: The License text to summarise
tokenizer: The tokenizer corresponding to the model used to convert the text into separate words(tokens)
Returns:
The text formatted into List of sentences to feed to the model
"""
parsed = self.nlp(text)
sents = [sent.text for sent in parsed.sents]
max_size = tokenizer.model_max_length
batch = tokenizer(sents, return_tensors='pt', return_length=True, padding='longest')
inp_batch = []
cur_batch = torch.empty((0,), dtype=torch.int64)
for enc_sent, length in zip(batch['input_ids'], batch['length']):
cur_size = cur_batch.shape[0]
if (cur_size + length.item()) <= max_size:
cur_batch = torch.cat((cur_batch,enc_sent[:length.item()]))
else:
inp_batch.append(torch.unsqueeze(cur_batch,0))
cur_batch = enc_sent[:length.item()]
inp_batch.append(torch.unsqueeze(cur_batch,0))
return inp_batch
def summarize(self, src, tokenizer, model):
"""
Function to use the pre-trained model to generate the summary
Arguments:
src: License text to summarise
tokenizer: The tokenizer corresponding to the model used to convert the text into separate words(tokens)
model: The pre-trained Model object used to perform the summarization
Returns:
summary: The summarised texts
"""
batch_texts = self.generate_batch(src, tokenizer)
enc_summary_list = [model.generate(batch, max_length=512) for batch in batch_texts]
summary_list = [tokenizer.batch_decode(enc_summ, skip_special_tokens=True) for enc_summ in enc_summary_list]
# orig_list = [tokenizer.batch_decode(batch, skip_special_tokens=True) for batch in batch_texts]
summary_texts = [summ[0] for summ in summary_list]
summary = " ".join(summary_texts)
self.summary = summary
def bart(self, src):
"""
Initialize the facebook BART pre-trained model and call necessary functions to summarize
Arguments:
src: The text to summarise
Returns/Set as instance variable:
The summarized text
"""
start_time = time.time()
model_name = 'facebook/bart-large-cnn'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name).to(device)
self.summarize(src, tokenizer, model)
def get_summary(lic_txt):
"""
Summarize the license and return it
Arguments:
spdx - Id of License to summarise
Returns:
pos_text: The part of the License containing information for permitted use
neg_text: The part of the License containing information about usage restrictions
lic_txt: The full license text
summary - The generated summary of the license
"""
print('Summarising...')
absSum = AbstractiveSummarizer()
# Generate summary
thread = absSum.bart(lic_txt)
return thread
def extract_ngrams(phrase):
phrase = re.sub('[^a-zA-Z0-9]',' ', phrase)
tokens = word_tokenize(phrase)
res = []
for num in range(len(tokens)+1):
temp = ngrams(tokens, num)
res += [' '.join(grams) for grams in temp]
return res
def get_highlight_text(text, keywords):
"""
Custom function to find exact position of keywords for highlighting
"""
text = re.sub('[-/]',' ', text)
# text = re.sub('(\n *){2,}','\n',text)
text = re.sub(' {2,}', ' ', text)
# Group keywords by length
kw_len = defaultdict(list)
for kw in keywords:
kw_len[len(kw)].append(kw)
# Use sliding window technique to check equal strings
spans = []
for length in kw_len:
w_start, w_end = 0, length
while w_end <= len(text):
for kw in kw_len[length]:
j = w_start
eq = True
for i in range(len(kw)):
if text[j] != kw[i]:
eq = False
break
j += 1
if eq:
spans.append([w_start, w_end])
break
w_start += 1
w_end += 1
if not spans:
return text
# merge spans
spans.sort(key=lambda x: x[0])
merged = []
st, end = spans[0][0], spans[0][1]
for i in range(1, len(spans)):
s,e = spans[i]
if st <= s <= end:
end = max(e, end)
else:
merged.append([st, end])
st, end = s,e
merged.append([st,end])
res = []
sub_start = 0
for s,e in merged:
res.append(text[sub_start:s])
res.append((text[s:e], "", "#f66"))
sub_start = e
res.append(text[sub_start:])
return res
def get_keywords(datatype, task, field, pos_text, neg_text):
"""
Summarize the license and generate the good and bad use tags
Arguments:
datafield - Type of 'data' used under the license: Eg. Model, Data, Model Derivatives, Source Code
task - The type of task the model is designed to do
field - Which 'field' to use the data in: Eg. Medical, Commercial, Non-Commercial, Research
pos_text: The part of the License containing information for permitted use
neg_text: The part of the License containing information about usage restrictions
Returns:
p_keywords - List of Positive(Permitted use) keywords extracted from summary
n_keywords - List of Negative(Restriction) keywords extracted from summary
contrd - boolean flag to show if there is any contradiction or not
hl_text - the license text formatted to display in a highlighted manner
"""
print('Extracting keywords...')
#[e.lower() for e in list_strings]
datatype, task, field = datatype.lower(), task.lower(), field.lower()
#datatype = [e.lower() for e in datatype]
#task = [e.lower() for e in task]
#field = [e.lower() for e in field]
#datatype, task, field = datatype, task, str(field)
stop_words = set(stopwords.words('english'))
#stops = nltk.corpus.stopwords.words('english')
#stop_words = set(stops)
stop_words = stop_words.union({'license', 'licensing', 'licensor', 'copyright', 'copyrights', 'patent'})
pos_kw_model = KeyBERT()
neg_kw_model = KeyBERT()
candidates = []
for term in [datatype, task, field]:
candidates += extract_ngrams(term)
p_kw = pos_kw_model.extract_keywords(docs=pos_text, top_n=40, vectorizer=KeyphraseCountVectorizer(stop_words=stop_words))#, pos_pattern='<N.*>+'))
n_kw = neg_kw_model.extract_keywords(docs=neg_text, top_n=40, vectorizer=KeyphraseCountVectorizer(stop_words=stop_words))#, pos_pattern='<N.*>+'))
ngram_max = max([len(word_tokenize(x)) for x in [datatype, task, field]])
pc_kw = pos_kw_model.extract_keywords(docs=pos_text ,candidates=candidates, keyphrase_ngram_range=(1,ngram_max))
nc_kw = neg_kw_model.extract_keywords(docs=neg_text ,candidates=candidates, keyphrase_ngram_range=(1,ngram_max))
# Check contradiction
all_cont = [kw for (kw,_) in nc_kw]
cont_terms = set(all_cont).intersection(set(extract_ngrams(field)))
contrd = True if len(cont_terms) > 0 else False
hl_text = "" if not contrd else get_highlight_text(neg_text, all_cont)
p_kw += pc_kw
n_kw += nc_kw
p_kw.sort(key=lambda x: x[1], reverse=True)
n_kw.sort(key=lambda x: x[1], reverse=True)
p_keywords = [kw for (kw,score) in p_kw if score < 0.5]
n_keywords = [kw for (kw,score) in n_kw if score < 0.5]
return p_keywords, n_keywords, contrd, hl_text |