FCameCode commited on
Commit
24ab983
1 Parent(s): 16b9dd4

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -102
app.py DELETED
@@ -1,102 +0,0 @@
1
- import requests
2
- from PIL import Image
3
- from io import BytesIO
4
- from numpy import asarray
5
- import gradio as gr
6
- import numpy as np
7
- from math import ceil
8
- from huggingface_hub import from_pretrained_keras
9
-
10
- r = requests.get(
11
- 'https://api.nasa.gov/planetary/apod?api_key=0eyGPKWmJmE5Z0Ijx25oG56ydbTKWE2H75xuEefx')
12
- result = r.json()
13
- receive = requests.get(result['url'])
14
- img = Image.open(BytesIO(receive.content)).convert('RGB')
15
-
16
- model = from_pretrained_keras("GIanlucaRub/autoencoder_model_d_0")
17
-
18
-
19
- def double_res(input_image):
20
- input_height = input_image.shape[0]
21
- input_width = input_image.shape[1]
22
- height = ceil(input_height/128)
23
- width = ceil(input_width/128)
24
- expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8)
25
- np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
26
-
27
- output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
28
-
29
- for i in range(height):
30
- for j in range(width):
31
- temp_slice = expanded_input_image[i *
32
- 128:(i+1)*128, j*128:(j+1)*128]/255
33
- upsampled_slice = model.predict(temp_slice[np.newaxis, ...])
34
- np.copyto(output_image[i*256:(i+1)*256, j *
35
- 256:(j+1)*256], upsampled_slice[0])
36
- if i != 0 and j != 0 and i != height-1 and j != width-1:
37
- # removing inner borders
38
- right_slice = expanded_input_image[i *
39
- 128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
40
- right_upsampled_slice = model.predict(
41
- right_slice[np.newaxis, ...])
42
- resized_right_slice = right_upsampled_slice[0][64:192, 64:192]
43
- np.copyto(output_image[i*256+64:(i+1)*256-64,
44
- (j+1)*256-64:(j+1)*256+64], resized_right_slice)
45
-
46
- left_slice = expanded_input_image[i *
47
- 128:(i+1)*128, j*128-64:(j)*128+64]/255
48
- left_upsampled_slice = model.predict(
49
- left_slice[np.newaxis, ...])
50
- resized_left_slice = left_upsampled_slice[0][64:192, 64:192]
51
- np.copyto(output_image[i*256+64:(i+1)*256-64,
52
- j*256-64:j*256+64], resized_left_slice)
53
-
54
- upper_slice = expanded_input_image[(
55
- i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
56
- upper_upsampled_slice = model.predict(
57
- upper_slice[np.newaxis, ...])
58
- resized_upper_slice = upper_upsampled_slice[0][64:192, 64:192]
59
- np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
60
- j*256+64:(j+1)*256-64], resized_upper_slice)
61
-
62
- lower_slice = expanded_input_image[i *
63
- 128-64:i*128+64, j*128:(j+1)*128]/255
64
- lower_upsampled_slice = model.predict(
65
- lower_slice[np.newaxis, ...])
66
- resized_lower_slice = lower_upsampled_slice[0][64:192, 64:192]
67
- np.copyto(output_image[i*256-64:i*256+64,
68
- j*256+64:(j+1)*256-64], resized_lower_slice)
69
-
70
-
71
- # removing angles
72
- lower_right_slice = expanded_input_image[i *
73
- 128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
74
- lower_right_upsampled_slice = model.predict(
75
- lower_right_slice[np.newaxis, ...])
76
- resized_lower_right_slice = lower_right_upsampled_slice[0][64:192, 64:192]
77
- np.copyto(output_image[i*256-64:i*256+64, (j+1)
78
- * 256-64:(j+1)*256+64], resized_lower_right_slice)
79
-
80
- lower_left_slice = expanded_input_image[i *
81
- 128-64:i*128+64, j*128-64:j*128+64]/255
82
- lower_left_upsampled_slice = model.predict(
83
- lower_left_slice[np.newaxis, ...])
84
- resized_lower_left_slice = lower_left_upsampled_slice[0][64:192, 64:192]
85
- np.copyto(
86
- output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
87
-
88
- resized_output_image = output_image[0:input_height*2, 0:input_width*2]
89
- return resized_output_image
90
-
91
-
92
- with gr.Blocks() as demo:
93
- with gr.Row():
94
- with gr.Column():
95
- gr.Label("Original image")
96
- input_img = gr.Image(img)
97
- with gr.Column():
98
- gr.Label("Image with resolution doubled")
99
- numpydata = asarray(img)
100
- output = double_res(numpydata) # numpy.ndarray
101
- input_img = gr.Image(output)
102
- demo.launch()