Spaces:
Runtime error
Runtime error
FFatih
commited on
Commit
·
8b4ba44
0
Parent(s):
Synchronisation Production
Browse files- README.md +37 -0
- app.py +98 -0
- requirements.txt +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SAE-GPT2
|
3 |
+
emoji: ❤️
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
<hr/>
|
13 |
+
|
14 |
+
<h4> Environnement de développement commun </h4>
|
15 |
+
|
16 |
+
<br/>
|
17 |
+
|
18 |
+
| Nom | Lien |
|
19 |
+
|------------|-------------------------------------------------------|
|
20 |
+
| Production | https://huggingface.co/spaces/FFatih/SAE-GPT2-PROD |
|
21 |
+
| Recette | https://huggingface.co/spaces/FFatih/SAE-GPT2-RECETTE |
|
22 |
+
|
23 |
+
<hr/>
|
24 |
+
|
25 |
+
<h4> Environnement de développement personnel </h4>
|
26 |
+
|
27 |
+
<br/>
|
28 |
+
|
29 |
+
| Prenom | Lien |
|
30 |
+
|-------------------|------------------------------------------------------------|
|
31 |
+
| Fatih | https://huggingface.co/spaces/FFatih/SAE-GPT2-FATIH |
|
32 |
+
| Bastien | https://huggingface.co/spaces/BastienHot/SAE-GPT2-BASTIEN |
|
33 |
+
| Pascal | https://huggingface.co/spaces/PascalZhan/SAE-GPT2-PASCAL |
|
34 |
+
| Tamij | https://huggingface.co/spaces/Tamij/SAE-GPT2-TAMIJ |
|
35 |
+
| Kevin | https://huggingface.co/spaces/Kemasu/SAE-GPT2-KEVIN |
|
36 |
+
| Lilian | https://huggingface.co/spaces/Solialiranes/SAE-GPT2-LILIAN |
|
37 |
+
| Evan | https://huggingface.co/spaces/Evanparis240/SAE-GPT2-EVAN |
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Bastien
|
2 |
+
# Date: 2/25/2024
|
3 |
+
# Project: SAE-GPT2 | BUT 3 Informatique - Semester 5
|
4 |
+
|
5 |
+
# Import of required libraries
|
6 |
+
import os
|
7 |
+
|
8 |
+
os.system("pip install --upgrade pip")
|
9 |
+
os.system("pip install googletrans-py")
|
10 |
+
os.system("pip install tensorflow==2.15.0")
|
11 |
+
os.system("pip install keras-nlp")
|
12 |
+
os.system("pip install -q --upgrade keras") # Upgrade Keras to version 3
|
13 |
+
|
14 |
+
import time
|
15 |
+
import keras
|
16 |
+
import keras_nlp
|
17 |
+
import pandas as pd
|
18 |
+
import gradio as gr
|
19 |
+
from googletrans import Translator
|
20 |
+
|
21 |
+
# Set Keras Backend to Tensorflow
|
22 |
+
os.environ["KERAS_BACKEND"] = "tensorflow"
|
23 |
+
|
24 |
+
# Load the fine-tuned model
|
25 |
+
model = keras.models.load_model("LoRA_Model_V2.keras")
|
26 |
+
|
27 |
+
translator = Translator() # Create Translator Instance
|
28 |
+
|
29 |
+
# Function to generate responses from the model
|
30 |
+
def generate_responses(question):
|
31 |
+
language = translator.detect(question).lang.upper() # Verify the language of the prompt
|
32 |
+
|
33 |
+
if language != "EN":
|
34 |
+
question = translator.translate(question, src=language, dest="en").text # Translation of user text to english for the model
|
35 |
+
|
36 |
+
prompt = f"Patient: \"{question}\"\nDoctor:"
|
37 |
+
# Generate the answer from the model and then clean and extract the real model's response from the prompt engineered string
|
38 |
+
output = clean_answer_text(model.generate(prompt, max_length=1024))
|
39 |
+
|
40 |
+
if language != "EN":
|
41 |
+
output = Translator().translate(output, src="en", dest=language).text # Translation of model's text to user's language
|
42 |
+
|
43 |
+
return output
|
44 |
+
|
45 |
+
|
46 |
+
# Function clean the output of the model from the prompt engineering done in the "generate_responses" function
|
47 |
+
def clean_answer_text(text: str) -> str:
|
48 |
+
# Define the start marker for the model's response
|
49 |
+
doctor_response_start = text.find("Doctor:") + len("Doctor:")
|
50 |
+
|
51 |
+
# Extract everything after "Doctor:"
|
52 |
+
response_text = text[doctor_response_start:].strip()
|
53 |
+
|
54 |
+
# If there's a follow-up "Patient:" in the response, cut the response there
|
55 |
+
follow_up_index = response_text.find("\nPatient:")
|
56 |
+
if follow_up_index != -1:
|
57 |
+
response_text = response_text[:follow_up_index]
|
58 |
+
|
59 |
+
# If there's no follow-up "Patient:", cut the response to the last dot (.)
|
60 |
+
else:
|
61 |
+
last_dot_index = response_text.rfind(".")
|
62 |
+
if last_dot_index != -1:
|
63 |
+
response_text = response_text[:last_dot_index + 1]
|
64 |
+
|
65 |
+
# Additional cleaning if necessary (e.g., removing leading/trailing spaces or new lines)
|
66 |
+
response_text = response_text.strip()
|
67 |
+
|
68 |
+
response_text = response_text.replace("Doctor: ","")
|
69 |
+
|
70 |
+
return response_text
|
71 |
+
|
72 |
+
# Initialize an empty DataFrame to keep track of question-answer history
|
73 |
+
history_df = pd.DataFrame(columns=["Question", "Réponse"])
|
74 |
+
|
75 |
+
# Define a Gradio interface
|
76 |
+
def chat_interface(question):
|
77 |
+
global history_df
|
78 |
+
response = generate_responses(question)
|
79 |
+
# Insert the new question and response at the beginning of the DataFrame
|
80 |
+
history_df = pd.concat([pd.DataFrame({"Question": [question], "Réponse": [response]}), history_df], ignore_index=True)
|
81 |
+
return response, history_df
|
82 |
+
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
gr.HTML("""
|
85 |
+
<div style='width: 100%; height: 200px; background: url("https://github.com/BastienHot/SAE-GPT2/raw/70fb88500a2cc168d71e8ed635fc54492beb6241/image/logo.png") no-repeat center center; background-size: contain;'>
|
86 |
+
<h1 style='text-align:center; width=100%'>DracolIA - AI Question Answering for Healthcare</h1>
|
87 |
+
</div>
|
88 |
+
""")
|
89 |
+
with gr.Row():
|
90 |
+
question = gr.Textbox(label="Votre Question", placeholder="Saisissez ici...")
|
91 |
+
submit_btn = gr.Button("Envoyer")
|
92 |
+
response = gr.Textbox(label="Réponse", interactive=False)
|
93 |
+
history_display = gr.Dataframe(headers=["Question", "Réponse"], values=[])
|
94 |
+
|
95 |
+
submit_btn.click(fn=chat_interface, inputs=question, outputs=[response, history_display])
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio
|