# Author: Bastien # Date: 2/25/2024 # Project: SAE-GPT2 | BUT 3 Informatique - Semester 5 # Import of required libraries import os os.system("pip install --upgrade pip") os.system("pip install googletrans-py") os.system("pip install tensorflow==2.15.0") os.system("pip install keras-nlp") os.system("pip install -q --upgrade keras") # Upgrade Keras to version 3 import time import keras import keras_nlp import pandas as pd import gradio as gr from googletrans import Translator # Set Keras Backend to Tensorflow os.environ["KERAS_BACKEND"] = "tensorflow" # Load the fine-tuned model model = keras.models.load_model("LoRA_Model_V2.keras") translator = Translator() # Create Translator Instance # Function to generate responses from the model def generate_responses(question): language = translator.detect(question).lang.upper() # Verify the language of the prompt if language != "EN": question = translator.translate(question, src=language, dest="en").text # Translation of user text to english for the model prompt = f"Patient: \"{question}\"\nDoctor:" # Generate the answer from the model and then clean and extract the real model's response from the prompt engineered string output = clean_answer_text(model.generate(prompt, max_length=1024)) if language != "EN": output = Translator().translate(output, src="en", dest=language).text # Translation of model's text to user's language return output # Function clean the output of the model from the prompt engineering done in the "generate_responses" function def clean_answer_text(text: str) -> str: # Define the start marker for the model's response doctor_response_start = text.find("Doctor:") + len("Doctor:") # Extract everything after "Doctor:" response_text = text[doctor_response_start:].strip() # If there's a follow-up "Patient:" in the response, cut the response there follow_up_index = response_text.find("\nPatient:") if follow_up_index != -1: response_text = response_text[:follow_up_index] # If there's no follow-up "Patient:", cut the response to the last dot (.) else: last_dot_index = response_text.rfind(".") if last_dot_index != -1: response_text = response_text[:last_dot_index + 1] # Additional cleaning if necessary (e.g., removing leading/trailing spaces or new lines) response_text = response_text.strip() response_text = response_text.replace("Doctor: ","") return response_text # Initialize an empty DataFrame to keep track of question-answer history history_df = pd.DataFrame(columns=["Question", "Réponse"]) # Define a Gradio interface def chat_interface(question): global history_df response = generate_responses(question) # Insert the new question and response at the beginning of the DataFrame history_df = pd.concat([pd.DataFrame({"Question": [question], "Réponse": [response]}), history_df], ignore_index=True) return response, history_df with gr.Blocks() as demo: gr.HTML("""

DracolIA - AI Question Answering for Healthcare

""") with gr.Row(): question = gr.Textbox(label="Votre Question", placeholder="Saisissez ici...") submit_btn = gr.Button("Envoyer") response = gr.Textbox(label="Réponse", interactive=False) history_display = gr.Dataframe(headers=["Question", "Réponse"], values=[]) submit_btn.click(fn=chat_interface, inputs=question, outputs=[response, history_display]) if __name__ == "__main__": demo.launch()