# -*- coding: utf-8 -*- """Untitled3.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1zwLQmMKCQKLMkJ_5Un4C6V4ajs4LYUOR """ """ !pip install --upgrade typing-extensions -q !pip install -q gradio --upgrade -q !pip install keras_nlp -q """ from google.colab import drive drive.mount('/content/drive') import os from tensorflow import keras import keras_nlp import gradio as gr import random import time os.environ["KERAS_BACKEND"] = "tensorflow" # or "tensorflow" or "torch" keras.mixed_precision.set_global_policy("mixed_float16") preprocessor = keras_nlp.models.GPT2CausalLMPreprocessor.from_preset( "gpt2_large_en", sequence_length=256, ) gpt2_lm = keras_nlp.models.GPT2CausalLM.from_preset( "gpt2_large_en", preprocessor=preprocessor ) gpt2_lm.load_weights('./drive/MyDrive/checkpoints/my_checkpoint') css = """ .gradio-container { background-color: transparent; color: #f5f5dc; border-color: #d5aa5e; } /* Styling for the chatbot */ .chat{ border-color: #d5aa5e; background-color:#22201f; background-image: url('https://github.com/BastienHot/SAE-GPT2/blob/70fb88500a2cc168d71e8ed635fc54492beb6241/image/logo.png'); background-size: cover; background-position: center; } /* Styling for the user */ .user{ background-color: #957d52; } /* Styling for the text inside the chatbot */ .gradio-chatbox .message-container .message-right { color: #f5f5dc; /* Antique white text color */ border-color: #d5aa5e; background-color: red; } .md svelte-1syupzx chatbot{ border-color: #d5aa5e; background-color: #3e3836; } .message user svelte-1lcyrx4 message-bubble-border { border-color: #3e3836; } """ def predict(text): # Simulating model prediction return gpt2_lm.generate(text) with gr.Blocks(css=css) as demo: chatbot = gr.Chatbot(elem_classes="chat") msg = gr.Textbox(elem_classes="user") clear = gr.ClearButton([msg, chatbot]) def respond(message, chat_history): bot_message = predict(message) # Ajouter une classe pour la partie bot_message bot_message_html = f'
' # Ajouter une classe pour la partie message user_message_html = f' ' chat_history.append((user_message_html, bot_message_html)) time.sleep(2) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) if __name__ == "__main__": demo.launch(debug=True, share=True)