import gradio as gr import numpy as np from diffusers import StableDiffusionPipeline, DDPMScheduler, DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler import torch import PIL.Image import datetime # Check environment print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") device = "cuda" schedulers = { "DDPMScheduler": DDPMScheduler, "DDIMScheduler": DDIMScheduler, "PNDMScheduler": PNDMScheduler, "LMSDiscreteScheduler": LMSDiscreteScheduler, "EulerDiscreteScheduler": EulerDiscreteScheduler, "EulerAncestralDiscreteScheduler": EulerAncestralDiscreteScheduler, "DPMSolverMultistepScheduler": DPMSolverMultistepScheduler } class Model: def __init__(self, modelID, schedulerName): self.modelID = modelID self.pipe = StableDiffusionPipeline.from_pretrained(modelID, torch_dtype=torch.float16) self.pipe = self.pipe.to(device) self.pipe.scheduler = schedulers[schedulerName].from_config(self.pipe.scheduler.config) self.pipe.enable_xformers_memory_efficient_attention() def process(self, prompt: str, negative_prompt: str, guidance_scale:int = 6, num_images:int = 1, num_steps:int = 35): seed = np.random.randint(0, np.iinfo(np.int32).max) generator = torch.Generator(device).manual_seed(seed) now = datetime.datetime.now() print(now) print(self.modelID) print(prompt) print(negative_prompt) with torch.inference_mode(): images = self.pipe(prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_images_per_prompt=num_images, num_inference_steps=num_steps, generator=generator, height=768, width=768).images images = [PIL.Image.fromarray(np.array(img)) for img in images] return images def generateImage(prompt, n_prompt, modelName, schedulerName): images = models[modelName].process(prompt, n_prompt) images = [np.array(img) for img in images] return images[0] # Return the first image def create_demo(): # Settings are defined here prompt = gr.inputs.Textbox(label='Prompt',default='a sprinkled donut sitting on top of a table, blender donut tutorial, colorful hyperrealism, everything is made of candy, hyperrealistic digital painting, covered in sprinkles and crumbs, vibrant colors hyper realism, colorful smoke explosion background') n_prompt = gr.inputs.Textbox( label='Negative Prompt', default='(disfigured), ((bad art)), ((deformed)), ((extra limbs)), (((duplicate))), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, poorly drawn eyes, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), cloned face, body out of frame, out of frame, bad anatomy, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), (fused fingers), (too many fingers), (((long neck))), Deformed, blurry' ) modelName = gr.inputs.Dropdown(choices=list(models.keys()), label="FFusion Test Model", default=list(models.keys())[0]) # Set the default model schedulerName = gr.inputs.Dropdown(choices=list(schedulers.keys()), label="Scheduler", default=list(schedulers.keys())[0]) # Set the default scheduler inputs = [prompt, n_prompt, modelName, schedulerName] # Images are displayed here result = gr.outputs.Image(label='Output', type="numpy") # Define the function to run when the button is clicked def run(prompt, n_prompt, modelName, schedulerName): return generateImage(prompt, n_prompt, modelName, schedulerName) # Create the interface iface = gr.Interface( fn=run, inputs=inputs, outputs=result, layout=[ gr.Markdown("### FFusion.AI - beta Playground"), inputs, result ] ) return iface if __name__ == '__main__': models = { "FFUSION.ai-768-BaSE": Model("FFusion/FFusion-BaSE", list(schedulers.keys())[0]), "FFUSION.ai-v2.1-768-BaSE-alpha-preview": Model("FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha", list(schedulers.keys())[0]), "FFusion.ai.Beta-512": Model("FFusion/di.ffusion.ai.Beta512", list(schedulers.keys())[0]) } demo = create_demo() demo.launch()