File size: 5,393 Bytes
8ccf632
 
 
 
 
484cdbe
06f0278
 
8ccf632
 
6219e92
bc0adb1
8ccf632
06f0278
8ccf632
5f53da2
484cdbe
54192f0
 
484cdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
 
1e787e4
 
 
 
 
 
8ccf632
96ee202
8ccf632
 
06f0278
 
 
8ccf632
 
af42f9b
8ccf632
 
0ab1b47
caee859
8ccf632
 
96ee202
af42f9b
 
 
 
 
 
 
484cdbe
 
 
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484cdbe
 
 
 
 
 
 
 
8ccf632
96ee202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
484cdbe
 
af42f9b
 
8ccf632
 
0a779d1
8ccf632
 
 
 
 
 
2b62414
8ccf632
96ee202
8ccf632
 
 
27a66ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FluxPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048


def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, output_format="png"):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    if width*height*num_inference_steps <= 1024*1024*8:
        return infer_in_1min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
    else:
        return infer_in_5min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)

@spaces.GPU(duration=60)
def infer_in_1min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format):
    return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)

@spaces.GPU(duration=300)
def infer_in_5min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format):
    return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)

def infer_on_gpu(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format, progress=gr.Progress(track_tqdm=True)):
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt = prompt, 
        width = width,
        height = height,
        num_inference_steps = num_inference_steps, 
        generator = generator,
        guidance_scale=guidance_scale
    ).images[0] 
    return gr.update(format = output_format, value = image), seed
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

with gr.Blocks(delete_cache=(4000, 4000)) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged)
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/)
        """)
        
        prompt = gr.Text(
            label = "Prompt",
            show_label = False,
            lines = 2,
            autofocus = True,
            placeholder = "Enter your prompt",
            container = False
        )

        output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)

        with gr.Accordion("Advanced Settings", open=False):
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
        
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=4,
            )
            
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=1,
                maximum=15,
                step=0.1,
                value=3.5,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        
        run_button = gr.Button(value = "🚀 Generate", variant="primary")
        
        result = gr.Image(label="Result", show_label=False, format="png")
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format],
        outputs = [result, seed]
    )

demo.queue(default_concurrency_limit=2).launch(show_error=True)