Spaces:
Runtime error
Runtime error
File size: 5,393 Bytes
8ccf632 484cdbe 06f0278 8ccf632 6219e92 bc0adb1 8ccf632 06f0278 8ccf632 5f53da2 484cdbe 54192f0 484cdbe 8ccf632 1e787e4 8ccf632 96ee202 8ccf632 06f0278 8ccf632 af42f9b 8ccf632 0ab1b47 caee859 8ccf632 96ee202 af42f9b 484cdbe 8ccf632 484cdbe 8ccf632 96ee202 8ccf632 484cdbe af42f9b 8ccf632 0a779d1 8ccf632 2b62414 8ccf632 96ee202 8ccf632 27a66ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FluxPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, output_format="png"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if width*height*num_inference_steps <= 1024*1024*8:
return infer_in_1min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
else:
return infer_in_5min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
@spaces.GPU(duration=60)
def infer_in_1min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format):
return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
@spaces.GPU(duration=300)
def infer_in_5min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format):
return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
def infer_on_gpu(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format, progress=gr.Progress(track_tqdm=True)):
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=guidance_scale
).images[0]
return gr.update(format = output_format, value = image), seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
with gr.Blocks(delete_cache=(4000, 4000)) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged)
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/)
""")
prompt = gr.Text(
label = "Prompt",
show_label = False,
lines = 2,
autofocus = True,
placeholder = "Enter your prompt",
container = False
)
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
run_button = gr.Button(value = "🚀 Generate", variant="primary")
result = gr.Image(label="Result", show_label=False, format="png")
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format],
outputs = [result, seed]
)
demo.queue(default_concurrency_limit=2).launch(show_error=True)
|