|
|
|
"""This file holding some environment constant for sharing by other files.""" |
|
import os |
|
import os.path as osp |
|
import subprocess |
|
import sys |
|
from collections import OrderedDict, defaultdict |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
def is_rocm_pytorch() -> bool: |
|
"""Check whether the PyTorch is compiled on ROCm.""" |
|
is_rocm = False |
|
if TORCH_VERSION != "parrots": |
|
try: |
|
from torch.utils.cpp_extension import ROCM_HOME |
|
is_rocm = True if ((torch.version.hip is not None) and |
|
(ROCM_HOME is not None)) else False |
|
except ImportError: |
|
pass |
|
return is_rocm |
|
|
|
TORCH_VERSION = torch.__version__ |
|
|
|
def get_build_config(): |
|
"""Obtain the build information of PyTorch or Parrots.""" |
|
if TORCH_VERSION == "parrots": |
|
from parrots.config import get_build_info |
|
return get_build_info() |
|
else: |
|
return torch.__config__.show() |
|
|
|
try: |
|
import torch_musa |
|
IS_MUSA_AVAILABLE = True |
|
except Exception: |
|
IS_MUSA_AVAILABLE = False |
|
|
|
def is_musa_available() -> bool: |
|
return IS_MUSA_AVAILABLE |
|
|
|
def is_cuda_available() -> bool: |
|
"""Returns True if cuda devices exist.""" |
|
return torch.cuda.is_available() |
|
|
|
def _get_cuda_home(): |
|
if TORCH_VERSION == "parrots": |
|
from parrots.utils.build_extension import CUDA_HOME |
|
else: |
|
if is_rocm_pytorch(): |
|
from torch.utils.cpp_extension import ROCM_HOME |
|
CUDA_HOME = ROCM_HOME |
|
else: |
|
from torch.utils.cpp_extension import CUDA_HOME |
|
return CUDA_HOME |
|
|
|
|
|
def _get_musa_home(): |
|
return os.environ.get("MUSA_HOME") |
|
|
|
|
|
def collect_env(): |
|
"""Collect the information of the running environments. |
|
|
|
Returns: |
|
dict: The environment information. The following fields are contained. |
|
|
|
- sys.platform: The variable of ``sys.platform``. |
|
- Python: Python version. |
|
- CUDA available: Bool, indicating if CUDA is available. |
|
- GPU devices: Device type of each GPU. |
|
- CUDA_HOME (optional): The env var ``CUDA_HOME``. |
|
- NVCC (optional): NVCC version. |
|
- GCC: GCC version, "n/a" if GCC is not installed. |
|
- MSVC: Microsoft Virtual C++ Compiler version, Windows only. |
|
- PyTorch: PyTorch version. |
|
- PyTorch compiling details: The output of \ |
|
``torch.__config__.show()``. |
|
- TorchVision (optional): TorchVision version. |
|
- OpenCV (optional): OpenCV version. |
|
""" |
|
from distutils import errors |
|
|
|
env_info = OrderedDict() |
|
env_info["sys.platform"] = sys.platform |
|
env_info["Python"] = sys.version.replace("\n", "") |
|
|
|
cuda_available = is_cuda_available() |
|
musa_available = is_musa_available() |
|
env_info["CUDA available"] = cuda_available |
|
env_info["MUSA available"] = musa_available |
|
env_info["numpy_random_seed"] = np.random.get_state()[1][0] |
|
|
|
if cuda_available: |
|
devices = defaultdict(list) |
|
for k in range(torch.cuda.device_count()): |
|
devices[torch.cuda.get_device_name(k)].append(str(k)) |
|
for name, device_ids in devices.items(): |
|
env_info["GPU " + ",".join(device_ids)] = name |
|
|
|
CUDA_HOME = _get_cuda_home() |
|
env_info["CUDA_HOME"] = CUDA_HOME |
|
|
|
if CUDA_HOME is not None and osp.isdir(CUDA_HOME): |
|
if CUDA_HOME == "/opt/rocm": |
|
try: |
|
nvcc = osp.join(CUDA_HOME, "hip/bin/hipcc") |
|
nvcc = subprocess.check_output( |
|
f"\"{nvcc}\" --version", shell=True) |
|
nvcc = nvcc.decode("utf-8").strip() |
|
release = nvcc.rfind("HIP version:") |
|
build = nvcc.rfind("") |
|
nvcc = nvcc[release:build].strip() |
|
except subprocess.SubprocessError: |
|
nvcc = "Not Available" |
|
else: |
|
try: |
|
nvcc = osp.join(CUDA_HOME, "bin/nvcc") |
|
nvcc = subprocess.check_output(f"\"{nvcc}\" -V", shell=True) |
|
nvcc = nvcc.decode("utf-8").strip() |
|
release = nvcc.rfind("Cuda compilation tools") |
|
build = nvcc.rfind("Build ") |
|
nvcc = nvcc[release:build].strip() |
|
except subprocess.SubprocessError: |
|
nvcc = "Not Available" |
|
env_info["NVCC"] = nvcc |
|
elif musa_available: |
|
devices = defaultdict(list) |
|
for k in range(torch.musa.device_count()): |
|
devices[torch.musa.get_device_name(k)].append(str(k)) |
|
for name, device_ids in devices.items(): |
|
env_info["GPU " + ",".join(device_ids)] = name |
|
|
|
MUSA_HOME = _get_musa_home() |
|
env_info["MUSA_HOME"] = MUSA_HOME |
|
|
|
if MUSA_HOME is not None and osp.isdir(MUSA_HOME): |
|
try: |
|
mcc = osp.join(MUSA_HOME, "bin/mcc") |
|
subprocess.check_output(f"\"{mcc}\" -v", shell=True) |
|
except subprocess.SubprocessError: |
|
mcc = "Not Available" |
|
env_info["mcc"] = mcc |
|
try: |
|
|
|
|
|
|
|
import io |
|
import sysconfig |
|
cc = sysconfig.get_config_var("CC") |
|
if cc: |
|
cc = osp.basename(cc.split()[0]) |
|
cc_info = subprocess.check_output(f"{cc} --version", shell=True) |
|
env_info["GCC"] = cc_info.decode("utf-8").partition( |
|
"\n")[0].strip() |
|
else: |
|
|
|
|
|
|
|
import locale |
|
import os |
|
from distutils.ccompiler import new_compiler |
|
ccompiler = new_compiler() |
|
ccompiler.initialize() |
|
cc = subprocess.check_output( |
|
f"{ccompiler.cc}", stderr=subprocess.STDOUT, shell=True) |
|
encoding = os.device_encoding( |
|
sys.stdout.fileno()) or locale.getpreferredencoding() |
|
env_info["MSVC"] = cc.decode(encoding).partition("\n")[0].strip() |
|
env_info["GCC"] = "n/a" |
|
except (subprocess.CalledProcessError, errors.DistutilsPlatformError): |
|
env_info["GCC"] = "n/a" |
|
except io.UnsupportedOperation as e: |
|
|
|
|
|
|
|
|
|
env_info["MSVC"] = f"n/a, reason: {str(e)}" |
|
|
|
env_info["PyTorch"] = torch.__version__ |
|
env_info["PyTorch compiling details"] = get_build_config() |
|
|
|
try: |
|
import torchvision |
|
env_info["TorchVision"] = torchvision.__version__ |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
try: |
|
import cv2 |
|
env_info["OpenCV"] = cv2.__version__ |
|
except ImportError: |
|
pass |
|
|
|
|
|
return env_info |
|
|
|
if __name__ == "__main__": |
|
for name, val in collect_env().items(): |
|
print(f"{name}: {val}") |