File size: 17,543 Bytes
ca90f09 d02ad9c 1f1f5f3 d0d2ab6 c3f1b59 de25487 dd59b92 722210d 2f7d9da d02ad9c 194fffd c98fc74 dd59b92 25a1b59 74d134e a83a001 29a24a3 d069b98 a83a001 f539bd9 194fffd dcb8a32 8af8cfc dcb8a32 dd59b92 ba53663 8af8cfc dcb8a32 ba53663 dcb8a32 ba53663 dcb8a32 dd59b92 22c3972 094e01b d0d2ab6 722210d 094e01b d0d2ab6 e0c7db5 03ec240 e0c7db5 8d9b38e e0c7db5 a5aaaf2 0ba1c46 22c3972 dcb8a32 ba53663 22c3972 d0d2ab6 22c3972 ba53663 d0d2ab6 22c3972 194fffd 722210d dcb8a32 ba53663 dcb8a32 ba53663 dcb8a32 dd59b92 722210d f87052e dcb8a32 722210d 3001020 dcb8a32 db35b73 ba53663 db35b73 dcb8a32 db35b73 3001020 dcb8a32 3001020 61b4d88 dcb8a32 142fdc7 6da7111 142fdc7 48b3e91 dcb8a32 61b4d88 dcb8a32 3001020 142fdc7 72b6265 142fdc7 e0c7db5 dcb8a32 3001020 dcb8a32 8af8cfc dcb8a32 3001020 dcb8a32 8af8cfc dcb8a32 3001020 dcb8a32 3001020 dcb8a32 8af8cfc 3001020 dcb8a32 8af8cfc ba53663 dd59b92 dcb8a32 dd59b92 3001020 dcb8a32 ba53663 dcb8a32 ba53663 dcb8a32 ba53663 dcb8a32 ba53663 dcb8a32 3001020 8af8cfc 3001020 dcb8a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import sys
import os
import re
import time
import math
import torch
import random
import spaces
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager
max_64_bit_int = 2**63 - 1
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
m = model_name
# Automatic device detection
if torch.cuda.is_available():
# cuda only
device_type = "cuda"
device_selection = "cuda:0"
data_type = torch.float16
else:
# no GPU or Amd
device_type = "cpu"
device_selection = "cpu"
data_type = torch.float32
tts = TTS(model_name, gpu=torch.cuda.is_available())
tts.to(device_type)
def update_output(output_number):
return [
gr.update(visible = (2 <= output_number)),
gr.update(visible = (3 <= output_number)),
gr.update(visible = (4 <= output_number)),
gr.update(visible = (5 <= output_number)),
gr.update(visible = (6 <= output_number)),
gr.update(visible = (7 <= output_number)),
gr.update(visible = (8 <= output_number)),
gr.update(visible = (9 <= output_number))
]
def predict0(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 0, generation_number, temperature, is_randomize_seed, seed, progress)
def predict1(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 1, generation_number, temperature, is_randomize_seed, seed, progress)
def predict2(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 2, generation_number, temperature, is_randomize_seed, seed, progress)
def predict3(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 3, generation_number, temperature, is_randomize_seed, seed, progress)
def predict4(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 4, generation_number, temperature, is_randomize_seed, seed, progress)
def predict5(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 5, generation_number, temperature, is_randomize_seed, seed, progress)
def predict6(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 6, generation_number, temperature, is_randomize_seed, seed, progress)
def predict7(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 7, generation_number, temperature, is_randomize_seed, seed, progress)
def predict8(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 8, generation_number, temperature, is_randomize_seed, seed, progress)
def predict(
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
i,
generation_number,
temperature,
is_randomize_seed,
seed,
progress = gr.Progress()
):
if generation_number <= i:
return (
None,
None,
)
start = time.time()
progress(0, desc = "Preparing data...")
if len(prompt) < 2:
gr.Warning("Please give a longer prompt text")
return (
None,
None,
)
if 50000 < len(prompt):
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text")
return (
None,
None,
)
if use_mic:
if mic_file_path is None:
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
return (
None,
None,
)
else:
speaker_wav = mic_file_path
else:
speaker_wav = audio_file_pth
if speaker_wav is None:
if gender == "male":
speaker_wav = "./examples/male.mp3"
else:
speaker_wav = "./examples/female.wav"
output_filename = f"{i + 1}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:180] + ".wav"
try:
if language == "fr":
if m.find("your") != -1:
language = "fr-fr"
if m.find("/fr/") != -1:
language = None
predict_on_gpu(i, generation_number, prompt, speaker_wav, language, output_filename, temperature, is_randomize_seed, seed, progress)
except RuntimeError as e :
if "device-assert" in str(e):
# cannot do anything on cuda device side error, need to restart
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
sys.exit("Exit due to cuda device-assert")
else:
raise e
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
return (
output_filename,
information,
)
@spaces.GPU(duration=60)
def predict_on_gpu(
i,
generation_number,
prompt,
speaker_wav,
language,
output_filename,
temperature,
is_randomize_seed,
seed,
progress
):
progress((i + .5) / generation_number, desc = "Generating the audio #" + str(i + 1) + "...")
if is_randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
torch.manual_seed(seed)
tts.tts_to_file(
text = prompt,
file_path = output_filename,
speaker_wav = speaker_wav,
language = language,
temperature = temperature
)
with gr.Blocks() as interface:
gr.HTML(
"""
<h1><center>XTTS</center></h1>
<big><center>Generate long vocal from text in several languages following voice freely, without account, without watermark and download it</center></big>
<br/>
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip.
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
<br/>
<p>To avoid the queue, you can duplicate this space on CPU, GPU or ZERO space GPU:
<br/>
<a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/Multi-language_Text-to-Speech?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
"""
)
with gr.Column():
prompt = gr.Textbox(
label = "Text Prompt",
info = "One or two sentences at a time is better",
value = "Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality",
elem_id = "prompt-id",
)
with gr.Group():
language = gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=[
["Arabic", "ar"],
["Brazilian Portuguese", "pt"],
["Mandarin Chinese", "zh-cn"],
["Czech", "cs"],
["Dutch", "nl"],
["English", "en"],
["French", "fr"],
["German", "de"],
["Italian", "it"],
["Polish", "pl"],
["Russian", "ru"],
["Spanish", "es"],
["Turkish", "tr"]
],
max_choices=1,
value="en",
elem_id = "language-id",
)
gr.HTML("More languages <a href='https://huggingface.co/spaces/Brasd99/TTS-Voice-Cloner'>here</a>")
gender = gr.Radio(
["female", "male"],
label="Gender",
info="Gender of the voice",
elem_id = "gender-id",
)
audio_file_pth = gr.Audio(
label="Reference Audio",
#info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value=None,
elem_id = "audio-file-pth-id",
)
mic_file_path = gr.Audio(
sources=["microphone"],
type="filepath",
#info="Use your microphone to record audio",
label="Use Microphone for Reference",
elem_id = "mic-file-path-id",
)
use_mic = gr.Checkbox(
label = "Check to use Microphone as Reference",
value = False,
info = "Notice: Microphone input may not work properly under traffic",
elem_id = "use-mic-id",
)
generation_number = gr.Slider(
minimum = 1,
maximum = 9,
step = 1,
value = 1,
label = "Generation number",
info = "How many audios to generate",
elem_id = "generation-number-id"
)
with gr.Accordion("Advanced options", open = False):
temperature = gr.Slider(
minimum = 0,
maximum = 10,
step = .1,
value = .75,
label = "Temperature",
info = "Maybe useless",
elem_id = "temperature-id"
)
randomize_seed = gr.Checkbox(
label = "\U0001F3B2 Randomize seed",
value = True,
info = "If checked, result is always different",
elem_id = "randomize-seed-id"
)
seed = gr.Slider(
minimum = 0,
maximum = max_64_bit_int,
step = 1,
randomize = True,
label = "Seed",
elem_id = "seed-id"
)
submit = gr.Button(
"🚀 Speak",
variant = "primary",
elem_id = "submit-id"
)
synthesised_audio_1 = gr.Audio(
label="Synthesised Audio #1",
autoplay = False,
elem_id = "synthesised-audio-1-id"
)
synthesised_audio_2 = gr.Audio(
label="Synthesised Audio #2",
autoplay = False,
elem_id = "synthesised-audio-2-id",
visible = False
)
synthesised_audio_3 = gr.Audio(
label="Synthesised Audio #3",
autoplay = False,
elem_id = "synthesised-audio-3-id",
visible = False
)
synthesised_audio_4 = gr.Audio(
label="Synthesised Audio #4",
autoplay = False,
elem_id = "synthesised-audio-4-id",
visible = False
)
synthesised_audio_5 = gr.Audio(
label="Synthesised Audio #5",
autoplay = False,
elem_id = "synthesised-audio-5-id",
visible = False
)
synthesised_audio_6 = gr.Audio(
label="Synthesised Audio #6",
autoplay = False,
elem_id = "synthesised-audio-6-id",
visible = False
)
synthesised_audio_7 = gr.Audio(
label="Synthesised Audio #7",
autoplay = False,
elem_id = "synthesised-audio-7-id",
visible = False
)
synthesised_audio_8 = gr.Audio(
label="Synthesised Audio #8",
autoplay = False,
elem_id = "synthesised-audio-8-id",
visible = False
)
synthesised_audio_9 = gr.Audio(
label="Synthesised Audio #9",
autoplay = False,
elem_id = "synthesised-audio-9-id",
visible = False
)
information = gr.HTML()
submit.click(fn = update_output, inputs = [
generation_number
], outputs = [
synthesised_audio_2,
synthesised_audio_3,
synthesised_audio_4,
synthesised_audio_5,
synthesised_audio_6,
synthesised_audio_7,
synthesised_audio_8,
synthesised_audio_9
], queue = False, show_progress = False).success(predict0, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_1,
information
], scroll_to_output = True).success(predict1, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_2,
information
], scroll_to_output = True).success(predict2, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_3,
information
], scroll_to_output = True).success(predict3, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_4,
information
], scroll_to_output = True).success(predict4, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_5,
information
], scroll_to_output = True).success(predict5, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_6,
information
], scroll_to_output = True).success(predict6, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_7,
information
], scroll_to_output = True).success(predict7, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_8,
information
], scroll_to_output = True).success(predict8, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_9,
information
], scroll_to_output = True)
interface.queue(max_size = 5).launch(debug=True) |