File size: 17,543 Bytes
ca90f09
d02ad9c
1f1f5f3
d0d2ab6
c3f1b59
de25487
dd59b92
722210d
2f7d9da
 
d02ad9c
 
194fffd
c98fc74
dd59b92
 
25a1b59
74d134e
a83a001
29a24a3
d069b98
a83a001
f539bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
194fffd
dcb8a32
 
 
 
 
8af8cfc
 
 
 
 
dcb8a32
dd59b92
ba53663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8af8cfc
 
 
 
 
 
 
 
 
 
 
 
dcb8a32
 
 
 
 
 
 
ba53663
dcb8a32
 
 
 
 
 
ba53663
 
 
 
 
dcb8a32
 
dd59b92
22c3972
 
 
 
 
094e01b
d0d2ab6
722210d
094e01b
d0d2ab6
 
 
e0c7db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03ec240
e0c7db5
8d9b38e
e0c7db5
a5aaaf2
0ba1c46
22c3972
 
 
 
 
 
dcb8a32
ba53663
22c3972
 
 
 
 
 
 
 
 
d0d2ab6
 
 
 
 
 
 
 
22c3972
ba53663
d0d2ab6
22c3972
194fffd
722210d
dcb8a32
 
ba53663
dcb8a32
 
 
 
 
 
 
 
 
ba53663
dcb8a32
 
 
dd59b92
 
 
722210d
f87052e
 
 
dcb8a32
 
722210d
 
3001020
 
 
dcb8a32
 
 
db35b73
 
 
 
 
 
 
 
ba53663
db35b73
dcb8a32
db35b73
 
3001020
 
 
 
dcb8a32
 
 
 
3001020
61b4d88
 
dcb8a32
142fdc7
 
6da7111
 
 
 
 
 
 
 
 
 
 
 
 
142fdc7
 
48b3e91
dcb8a32
61b4d88
 
dcb8a32
 
 
 
 
 
3001020
142fdc7
72b6265
142fdc7
e0c7db5
dcb8a32
3001020
dcb8a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8af8cfc
dcb8a32
 
 
 
 
 
3001020
dcb8a32
 
 
 
 
 
8af8cfc
dcb8a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001020
dcb8a32
 
 
 
 
 
 
 
 
 
 
 
 
3001020
dcb8a32
 
 
 
 
 
8af8cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001020
 
dcb8a32
 
 
 
 
 
8af8cfc
 
 
 
 
ba53663
dd59b92
 
 
 
 
 
dcb8a32
 
dd59b92
 
3001020
dcb8a32
ba53663
 
 
 
 
 
 
 
 
 
 
 
 
dcb8a32
ba53663
 
 
 
 
 
 
 
 
 
 
 
 
dcb8a32
ba53663
 
 
 
 
 
 
 
 
 
 
 
 
dcb8a32
ba53663
 
 
 
 
 
 
 
 
 
 
 
 
dcb8a32
3001020
8af8cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001020
 
dcb8a32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import sys
import os
import re
import time
import math
import torch
import random
import spaces
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"

import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager

max_64_bit_int = 2**63 - 1
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
m = model_name

# Automatic device detection
if torch.cuda.is_available():
    # cuda only
    device_type = "cuda"
    device_selection = "cuda:0"
    data_type = torch.float16
else:
    # no GPU or Amd
    device_type = "cpu"
    device_selection = "cpu"
    data_type = torch.float32

tts = TTS(model_name, gpu=torch.cuda.is_available())
tts.to(device_type)

def update_output(output_number):
    return [
        gr.update(visible = (2 <= output_number)),
        gr.update(visible = (3 <= output_number)),
        gr.update(visible = (4 <= output_number)),
        gr.update(visible = (5 <= output_number)),
        gr.update(visible = (6 <= output_number)),
        gr.update(visible = (7 <= output_number)),
        gr.update(visible = (8 <= output_number)),
        gr.update(visible = (9 <= output_number))
    ]

def predict0(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 0, generation_number, temperature, is_randomize_seed, seed, progress)

def predict1(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 1, generation_number, temperature, is_randomize_seed, seed, progress)

def predict2(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 2, generation_number, temperature, is_randomize_seed, seed, progress)

def predict3(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 3, generation_number, temperature, is_randomize_seed, seed, progress)

def predict4(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 4, generation_number, temperature, is_randomize_seed, seed, progress)

def predict5(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 5, generation_number, temperature, is_randomize_seed, seed, progress)

def predict6(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 6, generation_number, temperature, is_randomize_seed, seed, progress)

def predict7(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 7, generation_number, temperature, is_randomize_seed, seed, progress)

def predict8(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
    return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 8, generation_number, temperature, is_randomize_seed, seed, progress)

def predict(
    prompt,
    language,
    gender,
    audio_file_pth,
    mic_file_path,
    use_mic,
    i,
    generation_number,
    temperature,
    is_randomize_seed,
    seed,
    progress = gr.Progress()
):
    if generation_number <= i:
        return (
                None,
                None,
            )
    start = time.time()
    progress(0, desc = "Preparing data...")

    if len(prompt) < 2:
        gr.Warning("Please give a longer prompt text")
        return (
                None,
                None,
            )
    if 50000 < len(prompt):
        gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text")
        return (
            None,
            None,
        )

    if use_mic:
        if mic_file_path is None:
            gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
            return (
                None,
                None,
            )
        else:
            speaker_wav = mic_file_path
    else:
        speaker_wav = audio_file_pth

    if speaker_wav is None:
        if gender == "male":
            speaker_wav = "./examples/male.mp3"
        else:
            speaker_wav = "./examples/female.wav"
        
    output_filename = f"{i + 1}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:180] + ".wav"
    
    try:
        if language == "fr":
            if m.find("your") != -1:
                language = "fr-fr"
        if m.find("/fr/") != -1:
            language = None
    
        predict_on_gpu(i, generation_number, prompt, speaker_wav, language, output_filename, temperature, is_randomize_seed, seed, progress)
    except RuntimeError as e :
        if "device-assert" in str(e):
            # cannot do anything on cuda device side error, need to restart
            gr.Warning("Unhandled Exception encounter, please retry in a minute")
            print("Cuda device-assert Runtime encountered need restart")
            sys.exit("Exit due to cuda device-assert")
        else:
            raise e
        
    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."

    return (
        output_filename,
        information,
    )

@spaces.GPU(duration=60)
def predict_on_gpu(
    i,
    generation_number,
    prompt,
    speaker_wav,
    language,
    output_filename,
    temperature,
    is_randomize_seed,
    seed,
    progress
):
    progress((i + .5) / generation_number, desc = "Generating the audio #" + str(i + 1) + "...")
    if is_randomize_seed:
        seed = random.randint(0, max_64_bit_int)
        
    random.seed(seed)
    torch.manual_seed(seed)
    
    tts.tts_to_file(
        text = prompt,
        file_path = output_filename,
        speaker_wav = speaker_wav,
        language = language,
        temperature = temperature
    )

with gr.Blocks() as interface:
    gr.HTML(
        """
        <h1><center>XTTS</center></h1>
        <big><center>Generate long vocal from text in several languages following voice freely, without account, without watermark and download it</center></big>
        <br/>
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip. 
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. 
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
<br/>
<p>To avoid the queue, you can duplicate this space on CPU, GPU or ZERO space GPU:
<br/>
<a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/Multi-language_Text-to-Speech?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
        """
    )
    with gr.Column():
        prompt = gr.Textbox(
            label = "Text Prompt",
            info = "One or two sentences at a time is better",
            value = "Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality",
            elem_id = "prompt-id",
        )
        with gr.Group():
            language = gr.Dropdown(
                label="Language",
            info="Select an output language for the synthesised speech",
            choices=[
                    ["Arabic", "ar"],
                    ["Brazilian Portuguese", "pt"],
                    ["Mandarin Chinese", "zh-cn"],
                    ["Czech", "cs"],
                    ["Dutch", "nl"],
                    ["English", "en"],
                    ["French", "fr"],
                    ["German", "de"],
                    ["Italian", "it"],
                    ["Polish", "pl"],
                    ["Russian", "ru"],
                    ["Spanish", "es"],
                    ["Turkish", "tr"]
            ],
            max_choices=1,
            value="en",
            elem_id = "language-id",
            )
            gr.HTML("More languages <a href='https://huggingface.co/spaces/Brasd99/TTS-Voice-Cloner'>here</a>")
        gender = gr.Radio(
            ["female", "male"],
            label="Gender",
            info="Gender of the voice",
            elem_id = "gender-id",
        )
        audio_file_pth = gr.Audio(
            label="Reference Audio",
            #info="Click on the ✎ button to upload your own target speaker audio",
            type="filepath",
            value=None,
            elem_id = "audio-file-pth-id",
        )
        mic_file_path = gr.Audio(
            sources=["microphone"],
            type="filepath",
            #info="Use your microphone to record audio",
            label="Use Microphone for Reference",
            elem_id = "mic-file-path-id",
        )
        use_mic = gr.Checkbox(
            label = "Check to use Microphone as Reference",
                    value = False,
                    info = "Notice: Microphone input may not work properly under traffic",
                              elem_id = "use-mic-id",
                             )
        generation_number = gr.Slider(
                 minimum = 1,
                 maximum = 9,
                 step = 1,
                 value = 1,
                 label = "Generation number",
                 info = "How many audios to generate",
                 elem_id = "generation-number-id"
             )
        with gr.Accordion("Advanced options", open = False):
             temperature = gr.Slider(
                 minimum = 0,
                 maximum = 10,
                 step = .1,
                 value = .75,
                 label = "Temperature",
                 info = "Maybe useless",
                 elem_id = "temperature-id"
             )
             randomize_seed = gr.Checkbox(
                 label = "\U0001F3B2 Randomize seed",
                 value = True,
                 info = "If checked, result is always different",
                 elem_id = "randomize-seed-id"
             )
             seed = gr.Slider(
                 minimum = 0,
                 maximum = max_64_bit_int,
                 step = 1,
                 randomize = True,
                 label = "Seed",
                 elem_id = "seed-id"
             )

        submit = gr.Button(
            "🚀 Speak",
            variant = "primary",
            elem_id = "submit-id"
        )

        synthesised_audio_1 = gr.Audio(
            label="Synthesised Audio #1",
            autoplay = False,
            elem_id = "synthesised-audio-1-id"
        )

        synthesised_audio_2 = gr.Audio(
            label="Synthesised Audio #2",
            autoplay = False,
            elem_id = "synthesised-audio-2-id",
            visible = False
        )

        synthesised_audio_3 = gr.Audio(
            label="Synthesised Audio #3",
            autoplay = False,
            elem_id = "synthesised-audio-3-id",
            visible = False
        )

        synthesised_audio_4 = gr.Audio(
            label="Synthesised Audio #4",
            autoplay = False,
            elem_id = "synthesised-audio-4-id",
            visible = False
        )

        synthesised_audio_5 = gr.Audio(
            label="Synthesised Audio #5",
            autoplay = False,
            elem_id = "synthesised-audio-5-id",
            visible = False
        )

        synthesised_audio_6 = gr.Audio(
            label="Synthesised Audio #6",
            autoplay = False,
            elem_id = "synthesised-audio-6-id",
            visible = False
        )

        synthesised_audio_7 = gr.Audio(
            label="Synthesised Audio #7",
            autoplay = False,
            elem_id = "synthesised-audio-7-id",
            visible = False
        )

        synthesised_audio_8 = gr.Audio(
            label="Synthesised Audio #8",
            autoplay = False,
            elem_id = "synthesised-audio-8-id",
            visible = False
        )

        synthesised_audio_9 = gr.Audio(
            label="Synthesised Audio #9",
            autoplay = False,
            elem_id = "synthesised-audio-9-id",
            visible = False
        )
        information = gr.HTML()

    submit.click(fn = update_output, inputs = [
        generation_number
    ], outputs = [
        synthesised_audio_2,
        synthesised_audio_3,
        synthesised_audio_4,
        synthesised_audio_5,
        synthesised_audio_6,
        synthesised_audio_7,
        synthesised_audio_8,
        synthesised_audio_9
    ], queue = False, show_progress = False).success(predict0, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_1,
        information
    ], scroll_to_output = True).success(predict1, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_2,
        information
    ], scroll_to_output = True).success(predict2, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_3,
        information
    ], scroll_to_output = True).success(predict3, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_4,
        information
    ], scroll_to_output = True).success(predict4, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_5,
        information
    ], scroll_to_output = True).success(predict5, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_6,
        information
    ], scroll_to_output = True).success(predict6, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_7,
        information
    ], scroll_to_output = True).success(predict7, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_8,
        information
    ], scroll_to_output = True).success(predict8, inputs = [
        prompt,
        language,
        gender,
        audio_file_pth,
        mic_file_path,
        use_mic,
        generation_number,
        temperature,
        randomize_seed,
        seed
    ], outputs = [
        synthesised_audio_9,
        information
    ], scroll_to_output = True)

interface.queue(max_size = 5).launch(debug=True)