File size: 5,999 Bytes
ca90f09 d02ad9c de25487 2f7d9da d02ad9c 194fffd c98fc74 25a1b59 74d134e a83a001 29a24a3 d069b98 a83a001 f539bd9 194fffd f32ca90 22c3972 094e01b 22c3972 094e01b 22c3972 094e01b 22c3972 094e01b 22c3972 094e01b 22c3972 194fffd 3001020 db35b73 3001020 142fdc7 8d5f5d8 3001020 142fdc7 6da7111 142fdc7 48b3e91 3001020 142fdc7 72b6265 142fdc7 939c1fe 3001020 f74bce2 72b6265 3001020 0287131 3001020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import sys
import os
import torch
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
m = model_name
# Automatic device detection
if torch.cuda.is_available():
# cuda only
device_type = "cuda"
device_selection = "cuda:0"
data_type = torch.float16
else:
# no GPU or Amd
device_type = "cpu"
device_selection = "cpu"
data_type = torch.float32
tts = TTS(model_name, gpu=torch.cuda.is_available())
tts.to(device_type)
def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
if use_mic:
if mic_file_path is None:
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
return (
None,
None,
None,
)
else:
speaker_wav = mic_file_path
else:
speaker_wav = audio_file_pth
if len(prompt) < 2:
gr.Warning("Please give a longer prompt text")
return (
None,
None,
None,
)
if len(prompt) > 50000:
gr.Warning("Text length limited to 50000 characters for this demo, please try shorter text")
return (
None,
None,
None,
)
try:
if language == "fr":
if m.find("your") != -1:
language = "fr-fr"
if m.find("/fr/") != -1:
language = None
tts.tts_to_file(
text=prompt,
file_path="output.wav",
speaker_wav=speaker_wav,
language=language
)
except RuntimeError as e :
if "device-assert" in str(e):
# cannot do anything on cuda device side error, need to restart
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
sys.exit("Exit due to cuda device-assert")
else:
raise e
return (
gr.make_waveform(
audio="output.wav",
),
"output.wav",
None,
)
with gr.Blocks() as interface:
gr.HTML("Multi-language Text-to-Speech")
gr.HTML(
"""
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip.
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
<br/>
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings.
<br/>
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
"""
)
with gr.Column():
prompt = gr.Textbox(
label="Text Prompt",
info="One or two sentences at a time is better",
value="Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality",
)
language = gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=[
["Arabic", "ar"],
["Brazilian Portuguese", "pt"],
["Mandarin Chinese", "zh-cn"],
["Czech", "cs"],
["Dutch", "nl"],
["English", "en"],
["French", "fr"],
["German", "de"],
["Italian", "it"],
["Polish", "pl"],
["Russian", "ru"],
["Spanish", "es"],
["Turkish", "tr"]
],
max_choices=1,
value="en",
)
audio_file_pth = gr.Audio(
label="Reference Audio",
#info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value="examples/female.wav",
)
mic_file_path = gr.Audio(sources=["microphone"],
type="filepath",
#info="Use your microphone to record audio",
label="Use Microphone for Reference")
use_mic = gr.Checkbox(label="Check to use Microphone as Reference",
value=False,
info="Notice: Microphone input may not work properly under traffic",)
with gr.Accordion("Advanced options", open = False):
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
submit = gr.Button("🚀 Speak", variant = "primary")
waveform_visual = gr.Video(label="Waveform Visual", autoplay=True)
synthesised_audio = gr.Audio(label="Synthesised Audio", autoplay=False)
information = gr.HTML()
submit.click(predict, inputs = [
prompt, language, audio_file_pth, mic_file_path, use_mic
], outputs = [
waveform_visual,
synthesised_audio,
information
], scroll_to_output = True)
interface.queue().launch(debug=True) |