import sys import os import time import math import torch import spaces # By using XTTS you agree to CPML license https://coqui.ai/cpml os.environ["COQUI_TOS_AGREED"] = "1" import gradio as gr from TTS.api import TTS from TTS.utils.manage import ModelManager model_names = TTS().list_models() print(model_names.__dict__) print(model_names.__dir__()) model_name = "tts_models/multilingual/multi-dataset/xtts_v2" m = model_name # Automatic device detection if torch.cuda.is_available(): # cuda only device_type = "cuda" device_selection = "cuda:0" data_type = torch.float16 else: # no GPU or Amd device_type = "cpu" device_selection = "cpu" data_type = torch.float32 tts = TTS(model_name, gpu=torch.cuda.is_available()) tts.to(device_type) def predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic): start = time.time() if len(prompt) < 2: gr.Warning("Please give a longer prompt text") return ( None, None, None, ) if 50000 < len(prompt): gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text") return ( None, None, None, ) if use_mic: if mic_file_path is None: gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios") return ( None, None, None, ) else: speaker_wav = mic_file_path else: speaker_wav = audio_file_pth if speaker_wav is None: if gender == "male": speaker_wav = "./examples/male.mp3" else: speaker_wav = "./examples/female.wav" try: if language == "fr": if m.find("your") != -1: language = "fr-fr" if m.find("/fr/") != -1: language = None predict_on_gpu(prompt, speaker_wav, language) except RuntimeError as e : if "device-assert" in str(e): # cannot do anything on cuda device side error, need to restart gr.Warning("Unhandled Exception encounter, please retry in a minute") print("Cuda device-assert Runtime encountered need restart") sys.exit("Exit due to cuda device-assert") else: raise e end = time.time() secondes = int(end - start) minutes = math.floor(secondes / 60) secondes = secondes - (minutes * 60) hours = math.floor(minutes / 60) minutes = minutes - (hours * 60) is_randomize_seed = False information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." return ( gr.make_waveform( audio="output.wav", ), "output.wav", information, ) @spaces.GPU(duration=60) def predict_on_gpu(prompt, speaker_wav, language): tts.tts_to_file( text=prompt, file_path="output.wav", speaker_wav=speaker_wav, language=language ) with gr.Blocks() as interface: gr.HTML("Multi-language Text-to-Speech") gr.HTML( """ XTTS is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip.
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
This is the same model that powers our creator application Coqui Studio as well as the Coqui API. In production we apply modifications to make low-latency streaming possible.
Leave a star on the Github TTS, where our open-source inference and training code lives.

For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings.
Duplicate Space

""" ) with gr.Column(): prompt = gr.Textbox( label="Text Prompt", info="One or two sentences at a time is better", value="Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality", ) language = gr.Dropdown( label="Language", info="Select an output language for the synthesised speech", choices=[ ["Arabic", "ar"], ["Brazilian Portuguese", "pt"], ["Mandarin Chinese", "zh-cn"], ["Czech", "cs"], ["Dutch", "nl"], ["English", "en"], ["French", "fr"], ["German", "de"], ["Italian", "it"], ["Polish", "pl"], ["Russian", "ru"], ["Spanish", "es"], ["Turkish", "tr"] ], max_choices=1, value="en", ) gender = gr.Radio(["female", "male"], label="Gender", info="Gender of the voice") audio_file_pth = gr.Audio( label="Reference Audio", #info="Click on the ✎ button to upload your own target speaker audio", type="filepath", value=None, ) mic_file_path = gr.Audio(sources=["microphone"], type="filepath", #info="Use your microphone to record audio", label="Use Microphone for Reference") use_mic = gr.Checkbox(label="Check to use Microphone as Reference", value=False, info="Notice: Microphone input may not work properly under traffic",) with gr.Accordion("Advanced options", open = False): debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") submit = gr.Button("🚀 Speak", variant = "primary") waveform_visual = gr.Video(label="Waveform Visual", autoplay=True) synthesised_audio = gr.Audio(label="Synthesised Audio", autoplay=False) information = gr.HTML() submit.click(predict, inputs = [ prompt, language, gender, audio_file_pth, mic_file_path, use_mic ], outputs = [ waveform_visual, synthesised_audio, information ], scroll_to_output = True) interface.queue().launch(debug=True)