Fah commited on
Commit
c79767a
·
1 Parent(s): de61f76

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+
6
+ from pycaret.regression import *
7
+
8
+ # Set display results
9
+ pd.options.display.float_format = '{:,.4f}'.format
10
+ %config InlineBackend.figure_format = 'retina'
11
+
12
+ def predict_cvr(xyz_campaign_id, gender, age, Impressions, Clicks,
13
+ Total_Conversion, interest): #สร้าง function predict_cvr โดยภายใน function คือ ส่วนของ input data
14
+ path = "/content/drive/MyDrive/KAG_conversion_data.csv" #Import development ไฟล์ที่เป็น .csv
15
+ df = pd.read_csv(path) #อ่านไฟล์ csv
16
+ df.drop(["ad_id", "fb_campaign_id", "Spent","Approved_Conversion"],axis=1, inplace = True) #drop columns ทิ้ง
17
+ df = pd.DataFrame.from_dict({'xyz_campaign_id': [xyz_campaign_id], 'gender': [gender], 'age': [age], 'Impressions': [Impressions], 'Clicks': [Clicks],
18
+ 'Total_Conversion': [Total_Conversion], 'interest': [interest]}) #แปลงเป็น dataframe
19
+ df["xyz_campaign_id"].replace({916:"campaign_a",936:"campaign_b",1178:"campaign_c"}, inplace=True) #แทนที่ด้วยชื่อ campaign
20
+ pred = cvr_saved.predict(df).tolist()[0] #เมื่่อถูกทำนายแล้ว มันจะส่งกลับคืนค่าเข้าไปใน pred
21
+ return 'Conversion Rate : '+str(pred) #function predict_cvr จะส่ง output ออกมาเป็น "Conversion Rate : pred"
22
+
23
+ xyz_campaign_id = gr.inputs.Dropdown(['campaign_a', 'campaign_b', 'campaign_c'], label="xyz_campaign_id")
24
+ gender = gr.inputs.Dropdown(['M', 'F'], label = "gender")
25
+ age = gr.inputs.Dropdown(['30-34', '35-39', '40-44', '45-49'], label = "age")
26
+ Impressions = gr.inputs.Slider(minimum=100,maximum=1000000,step=100,label = "Impressions")
27
+ Clicks = gr.inputs.Slider(minimum=1,maximum=500,step=1, label = "Clicks")
28
+ Total_Conversion = gr.inputs.Slider(minimum=1,maximum=100,step= 1, label = "Total_Conversion")
29
+ interest = gr.inputs.Slider(minimum=1,maximum=114,step= 1, label = "interest")
30
+
31
+ gr.Interface(predict_cvr, inputs =[xyz_campaign_id, gender, age, Impressions, Clicks,
32
+ Total_Conversion, interest],
33
+ outputs="label",
34
+ title = "Facebook Ads Conversions Prediction Web App",
35
+ theme = "dark-peach",
36
+ capture_session=True).launch(debug=True);