import gradio as gr import pandas as pd from sklearn import datasets import seaborn as sns import matplotlib.pyplot as plt def findCorrelation(): iris = datasets.load_iris() df = pd.DataFrame(data=iris.data, columns=iris.feature_names) df["target"] = iris.target correlation = df["sepal length (cm)"].corr(df["petal length (cm)"]) corr = df.corr() fig1 = plt.figure() hm = sns.heatmap(df.corr(), annot = True) hm.set(xlabel='\nIRIS Flower Details', ylabel='IRIS Flower Details\t', title = "Correlation matrix of IRIS data\n") fig2 = plt.figure() # use the function regplot to make a scatterplot sns.regplot(x=df["sepal length (cm)"], y=df["sepal width (cm)"]) plt.show() return fig1, fig2, plt demo = gr.Interface(fn=findCorrelation, inputs=[], outputs=[gr.Plot(), gr.Plot(), gr.Plot()], title="Find correlation") demo.launch()