3v324v23 commited on
Commit
7ac295d
1 Parent(s): e6c05b5

Add application file

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Falah with Gradio
2
+ import gradio as gr
3
+ from transformers import pipeline
4
+ from PIL import Image, ImageDraw
5
+
6
+ checkpoint = "google/owlvit-base-patch32"
7
+ detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
8
+
9
+ def detect_and_visualize_objects(image):
10
+ # Convert the image to RGB format
11
+ image = image.convert("RGB")
12
+
13
+ # Process the image using the object detection model
14
+ predictions = detector(
15
+ image,
16
+ candidate_labels=["human face", "rocket", "nasa badge", "star-spangled banner"],
17
+ )
18
+
19
+ # Draw bounding boxes and labels on the image
20
+ draw = ImageDraw.Draw(image)
21
+ for prediction in predictions:
22
+ box = prediction["box"]
23
+ label = prediction["label"]
24
+ score = prediction["score"]
25
+
26
+ xmin, ymin, xmax, ymax = box.values()
27
+ draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1)
28
+ draw.text((xmin, ymin), f"{label}: {round(score, 2)}", fill="white")
29
+
30
+ # Return the annotated image
31
+ return image
32
+
33
+ # Define the Gradio interface
34
+ image_input = gr.inputs.Image(type="pil")
35
+ image_output = gr.outputs.Image(type="pil")
36
+
37
+ iface = gr.Interface(
38
+ fn=detect_and_visualize_objects,
39
+ inputs=image_input,
40
+ outputs=image_output,
41
+ title="Object Detection",
42
+ description="Detect objects in an image using a pre-trained model and visualize the results.",
43
+ )
44
+
45
+ # Launch the Gradio interface
46
+ iface.launch(debug=True)