Falln87 commited on
Commit
8e6e3de
·
verified ·
1 Parent(s): 6fec968

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -65
app.py CHANGED
@@ -1,48 +1,24 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
38
- return image
 
 
 
 
 
 
 
 
 
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
 
46
  css="""
47
  #col-container {
48
  margin: 0 auto;
@@ -50,17 +26,12 @@ css="""
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
  """)
65
 
66
  with gr.Row():
@@ -73,23 +44,16 @@ with gr.Blocks(css=css) as demo:
73
  container=False,
74
  )
75
 
76
- run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
 
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
92
- maximum=MAX_SEED,
93
  step=1,
94
  value=0,
95
  )
@@ -101,27 +65,27 @@ with gr.Blocks(css=css) as demo:
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
 
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
 
117
  with gr.Row():
118
 
119
  guidance_scale = gr.Slider(
120
  label="Guidance scale",
121
- minimum=0.0,
122
  maximum=10.0,
123
  step=0.1,
124
- value=0.0,
125
  )
126
 
127
  num_inference_steps = gr.Slider(
@@ -132,14 +96,10 @@ with gr.Blocks(css=css) as demo:
132
  value=2,
133
  )
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
  run_button.click(
141
  fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
  outputs = [result]
144
  )
145
 
 
1
  import gradio as gr
2
+ from gradio_client import Client
 
 
 
3
 
4
+ client = Client("multimodalart/FLUX.1-merged")
5
 
6
+ def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, api_name):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ result = client.predict(
9
+ prompt=prompt,
10
+ seed=seed,
11
+ randomize_seed=True,
12
+ width=width,
13
+ height=height,
14
+ guidance_scale=guidance_scale,
15
+ num_inference_steps=num_inference_steps,
16
+ api_name="/infer"
17
+ )
18
 
19
+ return result
 
 
 
 
20
 
21
+
22
  css="""
23
  #col-container {
24
  margin: 0 auto;
 
26
  }
27
  """
28
 
 
 
 
 
29
 
30
  with gr.Blocks(css=css) as demo:
31
 
32
  with gr.Column(elem_id="col-container"):
33
  gr.Markdown(f"""
34
+ #DiffusionLab Beta
 
35
  """)
36
 
37
  with gr.Row():
 
44
  container=False,
45
  )
46
 
47
+ run_button = gr.Button("Create", scale=0)
48
 
49
  result = gr.Image(label="Result", show_label=False)
50
 
51
  with gr.Accordion("Advanced Settings", open=False):
52
 
 
 
 
 
 
 
 
53
  seed = gr.Slider(
54
  label="Seed",
55
  minimum=0,
56
+ maximum=999999,
57
  step=1,
58
  value=0,
59
  )
 
65
  width = gr.Slider(
66
  label="Width",
67
  minimum=256,
68
+ maximum=2048,
69
  step=32,
70
+ value=1024,
71
  )
72
 
73
  height = gr.Slider(
74
  label="Height",
75
  minimum=256,
76
+ maximum=2024,
77
  step=32,
78
+ value=1024,
79
  )
80
 
81
  with gr.Row():
82
 
83
  guidance_scale = gr.Slider(
84
  label="Guidance scale",
85
+ minimum=0.1,
86
  maximum=10.0,
87
  step=0.1,
88
+ value=1.0,
89
  )
90
 
91
  num_inference_steps = gr.Slider(
 
96
  value=2,
97
  )
98
 
 
 
 
 
99
 
100
  run_button.click(
101
  fn = infer,
102
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
103
  outputs = [result]
104
  )
105