import gradio as gr from gradio_client import Client client = Client("multimodalart/FLUX.1-merged") def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, api_name): result = client.predict( prompt=prompt, seed=seed, randomize_seed=True, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, api_name="/infer" ) return result css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" #DiffusionLab Beta """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Create", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=999999, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=2048, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=2024, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=1.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) run_button.click( fn = infer, inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()