Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- Dockerfile +21 -0
- TextSimilarity.ipynb +141 -0
- TextSimilarity.py +28 -0
- app.py +51 -0
- requirements.txt +8 -0
- utils.py +17 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Base image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the application files
|
8 |
+
COPY app.py .
|
9 |
+
COPY TextSimilarity.py .
|
10 |
+
COPY requirements.txt .
|
11 |
+
COPY utils.py .
|
12 |
+
|
13 |
+
# Install dependencies
|
14 |
+
RUN pip3 install -r requirements.txt
|
15 |
+
RUN python3 download_model.py
|
16 |
+
|
17 |
+
# Expose the port
|
18 |
+
EXPOSE 8000
|
19 |
+
|
20 |
+
# Run the application
|
21 |
+
CMD ["python3", "app.py"]
|
TextSimilarity.ipynb
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Some weights of the model checkpoint at xlm-roberta-large were not used when initializing XLMRobertaModel: ['lm_head.layer_norm.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.bias', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias']\n",
|
13 |
+
"- This IS expected if you are initializing XLMRobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
14 |
+
"- This IS NOT expected if you are initializing XLMRobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"torch.Size([4, 768])\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"from multilingual_clip import pt_multilingual_clip\n",
|
27 |
+
"import transformers\n",
|
28 |
+
"\n",
|
29 |
+
"texts = [\n",
|
30 |
+
" 'Three blind horses listening to Mozart.',\n",
|
31 |
+
" 'Älgen är skogens konung!',\n",
|
32 |
+
" 'Wie leben Eisbären in der Antarktis?',\n",
|
33 |
+
" 'Вы знали, что все белые медведи левши?'\n",
|
34 |
+
"]\n",
|
35 |
+
"model_name = 'M-CLIP/XLM-Roberta-Large-Vit-L-14'\n",
|
36 |
+
"\n",
|
37 |
+
"# Load Model & Tokenizer\n",
|
38 |
+
"model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)\n",
|
39 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)\n",
|
40 |
+
"\n",
|
41 |
+
"embeddings = model.forward(texts, tokenizer)\n",
|
42 |
+
"print(embeddings.shape)"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"model"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 23,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"texts = [\n",
|
61 |
+
" 'Aku sayang kamu',\n",
|
62 |
+
" 'Aku benci kamu',\n",
|
63 |
+
"]\n",
|
64 |
+
"embeddings = model.forward(texts, tokenizer)"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 24,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"embeddings_1, embeddings_2 = embeddings\n",
|
74 |
+
"embeddings_1 = embeddings_1.cpu().detach().numpy()\n",
|
75 |
+
"embeddings_2 = embeddings_2.cpu().detach().numpy()"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 25,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"import numpy as np\n",
|
85 |
+
"from numpy.linalg import norm"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 26,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"name": "stdout",
|
95 |
+
"output_type": "stream",
|
96 |
+
"text": [
|
97 |
+
"0.967305\n"
|
98 |
+
]
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"source": [
|
102 |
+
"cosine = np.dot(embeddings_1,embeddings_2)/(norm(embeddings_1)*norm(embeddings_2))\n",
|
103 |
+
"print(cosine)"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": []
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"metadata": {
|
115 |
+
"kernelspec": {
|
116 |
+
"display_name": "base",
|
117 |
+
"language": "python",
|
118 |
+
"name": "python3"
|
119 |
+
},
|
120 |
+
"language_info": {
|
121 |
+
"codemirror_mode": {
|
122 |
+
"name": "ipython",
|
123 |
+
"version": 3
|
124 |
+
},
|
125 |
+
"file_extension": ".py",
|
126 |
+
"mimetype": "text/x-python",
|
127 |
+
"name": "python",
|
128 |
+
"nbconvert_exporter": "python",
|
129 |
+
"pygments_lexer": "ipython3",
|
130 |
+
"version": "3.9.13"
|
131 |
+
},
|
132 |
+
"orig_nbformat": 4,
|
133 |
+
"vscode": {
|
134 |
+
"interpreter": {
|
135 |
+
"hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
|
136 |
+
}
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"nbformat": 4,
|
140 |
+
"nbformat_minor": 2
|
141 |
+
}
|
TextSimilarity.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from multilingual_clip import pt_multilingual_clip
|
2 |
+
from numpy.linalg import norm
|
3 |
+
import transformers
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# M-CLIP/XLM-Roberta-Large-Vit-L-14
|
8 |
+
# M-CLIP/XLM-Roberta-Large-Vit-B-16Plus
|
9 |
+
|
10 |
+
|
11 |
+
class TextSimilarity:
|
12 |
+
def __init__(self, name_model="M-CLIP/XLM-Roberta-Large-Vit-B-32"):
|
13 |
+
self.name_model = name_model
|
14 |
+
self.device = torch.device(
|
15 |
+
"cuda:0" if torch.cuda.is_available() else "cpu")
|
16 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
17 |
+
self.name_model)
|
18 |
+
self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(
|
19 |
+
self.name_model)
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
def predict(self, text_1, text_2):
|
23 |
+
with torch.no_grad():
|
24 |
+
embeddings = self.model.forward([text_1, text_2], self.tokenizer)
|
25 |
+
embeddings_1, embeddings_2 = embeddings.cpu().detach().numpy()
|
26 |
+
cosine = np.dot(embeddings_1, embeddings_2) / \
|
27 |
+
(norm(embeddings_1)*norm(embeddings_2))
|
28 |
+
return cosine
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
from utils import check_score
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from fastapi import FastAPI, status
|
5 |
+
from TextSimilarity import TextSimilarity
|
6 |
+
from starlette.responses import JSONResponse
|
7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
8 |
+
|
9 |
+
|
10 |
+
class RequestBody(BaseModel):
|
11 |
+
text_1: str
|
12 |
+
text_2: str
|
13 |
+
|
14 |
+
|
15 |
+
app = FastAPI(docs_url=None, redoc_url=None)
|
16 |
+
text_similarity = TextSimilarity()
|
17 |
+
|
18 |
+
origins = ['*']
|
19 |
+
|
20 |
+
app.add_middleware(
|
21 |
+
CORSMiddleware,
|
22 |
+
allow_origins=origins,
|
23 |
+
allow_credentials=True,
|
24 |
+
allow_methods=["*"],
|
25 |
+
allow_headers=["*"],
|
26 |
+
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
@app.post("/penilaian")
|
31 |
+
async def penilaian(data_request: RequestBody):
|
32 |
+
if not data_request.text_2:
|
33 |
+
return JSONResponse({
|
34 |
+
"probability": 0,
|
35 |
+
"score": 0
|
36 |
+
}, status_code=status.HTTP_200_OK)
|
37 |
+
try:
|
38 |
+
probability = text_similarity.predict(
|
39 |
+
data_request.text_1, data_request.text_2)
|
40 |
+
return_value = check_score(float(probability))
|
41 |
+
return JSONResponse(
|
42 |
+
return_value, status_code=status.HTTP_200_OK)
|
43 |
+
except Exception as e:
|
44 |
+
print(e)
|
45 |
+
return JSONResponse({
|
46 |
+
"errors": "Please contact your administrator"
|
47 |
+
}, status_code=status.HTTP_500_INTERNAL_SERVER_ERROR)
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
uvicorn.run(app, host="localhost", port=53640)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pydantic==1.8.2
|
2 |
+
starlette==0.14.2
|
3 |
+
transformers==4.30.0
|
4 |
+
numpy==3.9
|
5 |
+
uvicorn[standard]
|
6 |
+
fastapi
|
7 |
+
torch>=1.13.1
|
8 |
+
torchvision>=0.14.1
|
utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def check_score(probability: float):
|
2 |
+
return_value = {
|
3 |
+
"probability": probability,
|
4 |
+
"score": 0,
|
5 |
+
}
|
6 |
+
if 0.95 <= probability <= 1:
|
7 |
+
return_value["score"] = 4
|
8 |
+
return return_value
|
9 |
+
elif 0.89 <= probability <= 0.95:
|
10 |
+
return_value["score"] = 3
|
11 |
+
return return_value
|
12 |
+
elif 0.75 <= probability <= 0.89:
|
13 |
+
return_value["score"] = 2
|
14 |
+
return return_value
|
15 |
+
elif probability <= 0.75:
|
16 |
+
return_value["score"] = 1
|
17 |
+
return return_value
|