lucIAna / app.py
Fecalisboa's picture
Update app.py
b91a4cd verified
raw
history blame
16.2 kB
import gradio as gr
import os
from pathlib import Path
import re
from unidecode import unidecode
import chromadb
from langchain_community.vectorstores import FAISS, ScaNN, Milvus
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch
import secrets
api_token = os.getenv("hf")
list_llm = ["Fecalisboa/Lu_model", "mistralai/Mistral-7B-Instruct-v0.3","unsloth/mistral-7b-v0.3" ]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name, db_type):
embedding = HuggingFaceEmbeddings()
if db_type == "ChromaDB":
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
elif db_type == "FAISS":
vectordb = FAISS.from_documents(
documents=splits,
embedding=embedding
)
elif db_type == "ScaNN":
vectordb = ScaNN.from_documents(
documents=splits,
embedding=embedding
)
elif db_type == "Milvus":
vectordb = Milvus.from_documents(
documents=splits,
embedding=embedding,
collection_name=collection_name,
)
else:
raise ValueError(f"Unsupported vector database type: {db_type}")
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
qa_chain({"question": initial_prompt}) # Initialize with the initial prompt
progress(0.9, desc="Done!")
return qa_chain
# Generate collection name for vector database
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
print('Filepath: ', filepath)
print('Collection name: ', collection_name)
return collection_name
# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, desc="Creating collection name...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Loading document...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name, db_type)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Complete!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
llm_name = list_llm[llm_option]
print("llm_name: ", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, initial_prompt, progress)
return qa_chain, "Complete!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def initialize_llm_no_doc(llm_model, temperature, max_tokens, top_k, initial_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
conversation_chain = ConversationChain(llm=llm, memory=memory, verbose=False)
conversation_chain({"question": initial_prompt})
progress(0.9, desc="Done!")
return conversation_chain
def conversation_no_doc(llm, message, history):
formatted_chat_history = format_chat_history(message, history)
response = llm({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
new_history = history + [(message, response_answer)]
return llm, gr.update(value=""), new_history
def upload_file(file_obj):
list_file_path = []
for file in file_obj:
list_file_path.append(file.name)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
initial_prompt = gr.State("")
llm_no_doc = gr.State()
gr.Markdown(
"""<center><h2>lucIAna</center></h2>
<h3>Olá, sou a 2. versão</h3>""")
gr.Markdown(
"""<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
""")
with gr.Tab("Step 1 - Upload PDF"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
with gr.Tab("Step 2 - Process document"):
with gr.Row():
db_type_radio = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="value", info="Choose your vector database")
with gr.Accordion("Advanced options - Document text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
db_btn = gr.Button("Generate vector database")
with gr.Tab("Step 3 - Set Initial Prompt"):
with gr.Row():
prompt_input = gr.Textbox(label="Initial Prompt", lines=5, value="Você é um advogado sênior, onde seu papel é analisar e trazer as informações sem inventar, dando a sua melhor opinião sempre trazendo contexto e referência. Aprenda o que é jurisprudência.")
with gr.Row():
set_prompt_btn = gr.Button("Set Prompt")
with gr.Tab("Step 4 - Initialize QA chain"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple,
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering chain")
with gr.Tab("Step 5 - Chatbot with document"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
with gr.Tab("Step 6 - Chatbot without document"):
chatbot_no_doc = gr.Chatbot(height=300)
with gr.Row():
msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
with gr.Row():
submit_btn_no_doc = gr.Button("Submit message")
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
# Preprocessing events
db_btn.click(initialize_database,
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
outputs=[vector_db, collection_name, db_progress])
set_prompt_btn.click(lambda prompt: prompt,
inputs=prompt_input,
outputs=initial_prompt)
qachain_btn.click(initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
# Chatbot events with document
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
# Chatbot events without document
submit_btn_no_doc.click(conversation_no_doc,
inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
queue=False)
clear_btn_no_doc.click(lambda:[None,""],
inputs=None,
outputs=[chatbot_no_doc, msg_no_doc],
queue=False)
# Initialize LLM without document for conversation
with gr.Tab("Initialize LLM for Chatbot without document"):
with gr.Row():
llm_no_doc_btn = gr.Radio(list_llm_simple,
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model for chatbot without document")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature_no_doc = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens_no_doc = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk_no_doc = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
llm_no_doc_progress = gr.Textbox(value="None", label="LLM initialization for chatbot without document")
with gr.Row():
llm_no_doc_init_btn = gr.Button("Initialize LLM for Chatbot without document")
llm_no_doc_init_btn.click(initialize_llm_no_doc,
inputs=[llm_no_doc_btn, slider_temperature_no_doc, slider_maxtokens_no_doc, slider_topk_no_doc, initial_prompt],
outputs=[llm_no_doc, llm_no_doc_progress])
demo.queue().launch(debug=True, share=True)
if __name__ == "__main__":
demo()