Spaces:
Runtime error
Runtime error
Fecalisboa
commited on
Commit
•
6120503
1
Parent(s):
42a8df2
Update app.py
Browse files
app.py
CHANGED
@@ -14,13 +14,51 @@ from langchain_community.llms import HuggingFacePipeline
|
|
14 |
from langchain.chains import ConversationChain
|
15 |
from langchain.memory import ConversationBufferMemory
|
16 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
17 |
import torch
|
|
|
18 |
api_token = os.getenv("HF_TOKEN")
|
19 |
|
|
|
|
|
|
|
|
|
20 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
21 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
25 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
26 |
pages = []
|
@@ -30,7 +68,6 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
30 |
doc_splits = text_splitter.split_documents(pages)
|
31 |
return doc_splits
|
32 |
|
33 |
-
# Create vector database
|
34 |
def create_db(splits, collection_name, db_type):
|
35 |
embedding = HuggingFaceEmbeddings()
|
36 |
|
@@ -63,10 +100,8 @@ def create_db(splits, collection_name, db_type):
|
|
63 |
|
64 |
return vectordb
|
65 |
|
66 |
-
# Initialize langchain LLM chain
|
67 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
68 |
progress(0.1, desc="Initializing HF tokenizer...")
|
69 |
-
|
70 |
progress(0.5, desc="Initializing HF Hub...")
|
71 |
|
72 |
llm = HuggingFaceEndpoint(
|
@@ -229,27 +264,58 @@ def demo():
|
|
229 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
230 |
|
231 |
with gr.Tab("Step 6 - Chatbot without document"):
|
232 |
-
with gr.Row():
|
233 |
-
llm_no_doc_btn = gr.Radio(list_llm_simple,
|
234 |
-
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model for chatbot without document")
|
235 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
236 |
-
with gr.Row():
|
237 |
-
slider_temperature_no_doc = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
238 |
-
with gr.Row():
|
239 |
-
slider_maxtokens_no_doc = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
240 |
-
with gr.Row():
|
241 |
-
slider_topk_no_doc = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
242 |
-
with gr.Row():
|
243 |
-
llm_no_doc_progress = gr.Textbox(value="None", label="LLM initialization for chatbot without document")
|
244 |
-
with gr.Row():
|
245 |
-
llm_no_doc_init_btn = gr.Button("Initialize LLM for Chatbot without document")
|
246 |
chatbot_no_doc = gr.Chatbot(height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
with gr.Row():
|
248 |
msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
|
249 |
with gr.Row():
|
250 |
submit_btn_no_doc = gr.Button("Submit message")
|
251 |
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
# Preprocessing events
|
254 |
db_btn.click(initialize_database,
|
255 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
@@ -257,7 +323,7 @@ def demo():
|
|
257 |
set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
|
258 |
inputs=prompt_input,
|
259 |
outputs=initial_prompt)
|
260 |
-
qachain_btn.click(
|
261 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
|
262 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
263 |
inputs=None,
|
@@ -279,10 +345,6 @@ def demo():
|
|
279 |
queue=False)
|
280 |
|
281 |
# Initialize LLM without document for conversation
|
282 |
-
llm_no_doc_init_btn.click(initialize_llm_no_doc,
|
283 |
-
inputs=[llm_no_doc_btn, slider_temperature_no_doc, slider_maxtokens_no_doc, slider_topk_no_doc, initial_prompt],
|
284 |
-
outputs=[llm_no_doc, llm_no_doc_progress])
|
285 |
-
|
286 |
submit_btn_no_doc.click(conversation_no_doc,
|
287 |
inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
288 |
outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
|
|
14 |
from langchain.chains import ConversationChain
|
15 |
from langchain.memory import ConversationBufferMemory
|
16 |
from langchain_community.llms import HuggingFaceEndpoint
|
17 |
+
from huggingface_hub import InferenceClient
|
18 |
import torch
|
19 |
+
|
20 |
api_token = os.getenv("HF_TOKEN")
|
21 |
|
22 |
+
client = InferenceClient(
|
23 |
+
"mistralai/Mistral-7B-Instruct-v0.3"
|
24 |
+
)
|
25 |
+
|
26 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
|
27 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
28 |
|
29 |
+
def format_prompt(message, history):
|
30 |
+
prompt = "<s>"
|
31 |
+
for user_prompt, bot_response in history:
|
32 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
33 |
+
prompt += f" {bot_response}</s> "
|
34 |
+
prompt += f"[INST] {message} [/INST]"
|
35 |
+
return prompt
|
36 |
+
|
37 |
+
def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
|
38 |
+
temperature = float(temperature)
|
39 |
+
if temperature < 1e-2:
|
40 |
+
temperature = 1e-2
|
41 |
+
top_p = float(top_p)
|
42 |
+
|
43 |
+
generate_kwargs = dict(
|
44 |
+
temperature=temperature,
|
45 |
+
max_new_tokens=max_new_tokens,
|
46 |
+
top_p=top_p,
|
47 |
+
repetition_penalty=repetition_penalty,
|
48 |
+
do_sample=True,
|
49 |
+
seed=42,
|
50 |
+
)
|
51 |
+
|
52 |
+
formatted_prompt = format_prompt(prompt, history)
|
53 |
+
|
54 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
55 |
+
output = ""
|
56 |
+
|
57 |
+
for response in stream:
|
58 |
+
output += response.token.text
|
59 |
+
yield output
|
60 |
+
return output
|
61 |
+
|
62 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
63 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
64 |
pages = []
|
|
|
68 |
doc_splits = text_splitter.split_documents(pages)
|
69 |
return doc_splits
|
70 |
|
|
|
71 |
def create_db(splits, collection_name, db_type):
|
72 |
embedding = HuggingFaceEmbeddings()
|
73 |
|
|
|
100 |
|
101 |
return vectordb
|
102 |
|
|
|
103 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
|
104 |
progress(0.1, desc="Initializing HF tokenizer...")
|
|
|
105 |
progress(0.5, desc="Initializing HF Hub...")
|
106 |
|
107 |
llm = HuggingFaceEndpoint(
|
|
|
264 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
265 |
|
266 |
with gr.Tab("Step 6 - Chatbot without document"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
chatbot_no_doc = gr.Chatbot(height=300)
|
268 |
+
additional_inputs=[
|
269 |
+
gr.Slider(
|
270 |
+
label="Temperature",
|
271 |
+
value=0.9,
|
272 |
+
minimum=0.0,
|
273 |
+
maximum=1.0,
|
274 |
+
step=0.05,
|
275 |
+
interactive=True,
|
276 |
+
info="Higher values produce more diverse outputs",
|
277 |
+
),
|
278 |
+
gr.Slider(
|
279 |
+
label="Max new tokens",
|
280 |
+
value=256,
|
281 |
+
minimum=0,
|
282 |
+
maximum=1048,
|
283 |
+
step=64,
|
284 |
+
interactive=True,
|
285 |
+
info="The maximum numbers of new tokens",
|
286 |
+
),
|
287 |
+
gr.Slider(
|
288 |
+
label="Top-p (nucleus sampling)",
|
289 |
+
value=0.90,
|
290 |
+
minimum=0.0,
|
291 |
+
maximum=1,
|
292 |
+
step=0.05,
|
293 |
+
interactive=True,
|
294 |
+
info="Higher values sample more low-probability tokens",
|
295 |
+
),
|
296 |
+
gr.Slider(
|
297 |
+
label="Repetition penalty",
|
298 |
+
value=1.2,
|
299 |
+
minimum=1.0,
|
300 |
+
maximum=2.0,
|
301 |
+
step=0.05,
|
302 |
+
interactive=True,
|
303 |
+
info="Penalize repeated tokens",
|
304 |
+
)
|
305 |
+
]
|
306 |
with gr.Row():
|
307 |
msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
|
308 |
with gr.Row():
|
309 |
submit_btn_no_doc = gr.Button("Submit message")
|
310 |
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
|
311 |
|
312 |
+
gr.ChatInterface(
|
313 |
+
fn=generate,
|
314 |
+
chatbot=chatbot_no_doc,
|
315 |
+
additional_inputs=additional_inputs,
|
316 |
+
title="Mistral 7B v0.3"
|
317 |
+
)
|
318 |
+
|
319 |
# Preprocessing events
|
320 |
db_btn.click(initialize_database,
|
321 |
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
|
|
|
323 |
set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
|
324 |
inputs=prompt_input,
|
325 |
outputs=initial_prompt)
|
326 |
+
qachain_btn.click(initialize_llmchain,
|
327 |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
|
328 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
|
329 |
inputs=None,
|
|
|
345 |
queue=False)
|
346 |
|
347 |
# Initialize LLM without document for conversation
|
|
|
|
|
|
|
|
|
348 |
submit_btn_no_doc.click(conversation_no_doc,
|
349 |
inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|
350 |
outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
|