#importing of modules to be used to run the program import extract import csv import os import csv import cv2 import logging import pytesseract import pandas as pd import numpy as np from scipy.stats import mode from PIL import Image import argparse import os import random #from google.colab.patches import cv2_imshow #import detectron2 #from detectron2.utils.logger import setup_logger #setup_logger() #from detectron2 import model_zoo #from detectron2.engine import DefaultPredictor #from detectron2.config import get_cfg #from detectron2.utils.visualizer import Visualizer import logging import cv2 import numpy as np from scipy.stats import mode #import and unzip the dataset #!ls #!unzip "Text_Detection_Dataset_COCO_Format.zip" #preparing the imported and extracted dataset with json #import json #from detectron2.structures import BoxMode #def get_board_dicts(imgdir): # json_file = imgdir+"/dataset.json" # with open(json_file) as f: # dataset_dicts = json.load(f) # for i in dataset_dicts: # filename = i["file_name"] # i["file_name"] = imgdir+"/"+filename # for j in i["annotations"]: # j["bbox_mode"] = BoxMode.XYWH_ABS # j["category_id"] = int(j["category_id"]) # return dataset_dicts #preprocessing the image pre-processing and pattern matching. #This python module can perform the following functions: #Binarization - method binary_img(img) performs this function #Skew correction - method skew_correction(img) performs this function #Need to introduce machine learning of some sort to make the skew correction method run faster :( Or... A simple fix would be to resize the #image first, and then apply the skew correction method! That'll probably take lesser time... logging.basicConfig( level=logging.DEBUG, format="%(levelname)s: %(asctime)s {%(filename)s:%(lineno)d}: %(message)s " ) kernel = np.ones((5, 5), np.uint8) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) img = cv2.imread('image_resize.png') # read image file to be processed """ Method to binarize an image Input: Grayscale image Output: Binary image The nature of the output is such that the text(foreground) has a colour value of (255,255,255), and the background has a value of (0,0,0). """ def binary_img(img): # img_erode = cv2.dilate(img,kernel,iterations = 2) blur = cv2.medianBlur(img, 5) # mask1 = np.ones(img.shape[:2],np.uint8) """Applying histogram equalization""" cl1 = clahe.apply(blur) circles_mask = cv2.dilate(cl1, kernel, iterations=1) circles_mask = (255 - circles_mask) thresh = 1 circles_mask = cv2.threshold(circles_mask, thresh, 255, cv2.THRESH_BINARY)[1] edges = cv2.Canny(cl1, 100, 200) edges = cv2.bitwise_and(edges, edges, mask=circles_mask) dilation = cv2.dilate(edges, kernel, iterations=1) display = cv2.bitwise_and(img, img, mask=dilation) cl2 = clahe.apply(display) cl2 = clahe.apply(cl2) ret, th = cv2.threshold(cl2, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) th = 255 - th thg = cv2.adaptiveThreshold(display, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \ cv2.THRESH_BINARY, 11, 2) # final = cv2.bitwise_and(dilation,dilation,mask=th) finalg = cv2.bitwise_and(dilation, dilation, mask=thg) finalg = 255 - finalg abso = cv2.bitwise_and(dilation, dilation, mask=finalg) return abso """ Method to resize the image. This is going to help in reducing the number of computations, as the size of data will reduce. """ def resize(img): r = 1000.0 / img.shape[1] dim = (1000, int(img.shape[0] * r)) resized = cv2.resize(img, dim, interpolation=cv2.INTER_AREA) # cv2.imshow('resized', resized) return resized """ Method to correct the skew of an image Input: Binary image Output: Skew corrected binary image The nature of the output is such that the binary image is rotated appropriately to remove any angular skew. Find out the right place to insert the resizing method call. Try to find one bounding rectangle around all the contours """ def skew_correction(img): areas = [] # stores all the areas of corresponding contours dev_areas = [] # stores all the areas of the contours within 1st std deviation in terms of area#stores all the white pixels of the largest contour within 1st std deviation all_angles = [] k = 0 binary = binary_img(img) # binary = resize(binary) im2, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # cnt = contours[0] # upper_bound=len(contours) height_orig, width_orig = img.shape[:2] words = np.zeros(img.shape[:2], np.uint8) for c in contours: areas.append(cv2.contourArea(c)) std_dev = np.std(areas) for i in areas: dev_areas.append(i - std_dev) dev_contours = np.zeros(img.shape[:2], np.uint8) for i in dev_areas: if ((i > (-std_dev)) and (i <= (std_dev))): cv2.drawContours(dev_contours, contours, k, (255, 255, 255), -1) k += 1 sobely = cv2.Sobel(dev_contours, cv2.CV_64F, 0, 1, ksize=5) abs_sobel64f = np.absolute(sobely) sobel_8u = np.uint8(abs_sobel64f) cv2.imshow('Output2',sobel_8u) minLineLength = 100 maxLineGap = 10 lines = cv2.HoughLinesP(sobel_8u, 1, np.pi / 180, 100, minLineLength, maxLineGap) for x1, y1, x2, y2 in lines[0]: cv2.line(words, (x1, y1), (x2, y2), (255, 255, 255), 2) # cv2.imshow('hough',words) height_orig, width_orig = img.shape[:2] all_angles = [] im2, contours, hierarchy = cv2.findContours(words, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) logging.debug(len(contours)) contour_count = 0 for c in contours: # max_index = np.argmax(areas) # current_contour = np.zeros(img.shape[:2],np.uint8) current_contour = np.zeros(img.shape[:2], np.uint8) cv2.drawContours(current_contour, contours, contour_count, (255, 255, 255), -1) height, width = current_contour.shape[:2] # all_white_pixels = [] current_white_pixels = [] for i in range(0, height): for j in range(0, width): if (current_contour.item(i, j) == 255): current_white_pixels.append([i, j]) matrix = np.array(current_white_pixels) """Finding covariance matrix""" C = np.cov(matrix.T) eigenvalues, eigenvectors = np.linalg.eig(C) """Finding max eigenvalue""" # max_ev = max(eigenvalues) """Finding index of max eigenvalue""" max_index = eigenvalues.argmax(axis=0) """The largest eigen value gives the approximate length of the bounding ellipse around the largest word. If we follow the index of the largest eigen value and find the eigen vectors in the column of that index, we'll get the x and y coordinates of it's centre.""" y = eigenvectors[1, max_index] x = eigenvectors[0, max_index] angle = (np.arctan2(y, x)) * (180 / np.pi) all_angles.append(angle) contour_count += 1 logging.debug(contour_count) logging.debug(all_angles) angle = np.mean(all_angles) logging.debug(angle) k = 0 non_zero_angles = [] for i in all_angles: if ((i != 0) and (i != 90.0)): non_zero_angles.append(i) logging.debug(non_zero_angles) rounded_angles = [] for i in non_zero_angles: rounded_angles.append(np.round(i, 0)) logging.debug(rounded_angles) logging.debug("mode is") # logging.debug(np.mode(rounded_angles)) # angle = np.mean(non_zero_angles) # angle = np.mode(rounded_angles) mode_angle = mode(rounded_angles)[0][0] logging.debug(mode_angle) precision_angles = [] for i in non_zero_angles: if (np.round(i, 0) == mode_angle): precision_angles.append(i) logging.debug('precision angles:') logging.debug(precision_angles) angle = np.mean(precision_angles) logging.debug('Finally, the required angle is:') logging.debug(angle) # M = cv2.getRotationMatrix2D((width/2,height/2),-(90+angle),1) M = cv2.getRotationMatrix2D((width / 2, height / 2), -(90 + angle), 1) dst = cv2.warpAffine(img, M, (width_orig, height_orig)) # cv2.imshow('final',dst) cv2.imwrite('images/skewcorrected2.jpg', dst) return dst def preprocess(img): return skew_correction(img) # Does not work with linux: # cv2.destroyAllWindows() #detecting characters on image creating key points on characters. #Detecting characters on image using keypoints #detecting keypoints caharacter characters on the image #this process draws keypoints on all characters available on the image #the image to be processed is passsed in here, such that cv2.imread = 'image_resize.png' img = cv2.imread('image_resize.png') #pass the image gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) orb = cv2.ORB_create(edgeThreshold=5,nfeatures=10000, scoreType=cv2.ORB_HARRIS_SCORE,scaleFactor=1.2) kp ,des= orb.detectAndCompute(gray,None) img=cv2.drawKeypoints(gray,kp,None) cv2.imwrite('processed/images/keypoints.jpg',img) cv2.imshow('threshold image', img) # Maintain output window until # user presses a key cv2.waitKey(0) # Destroying present windows on screen cv2.destroyAllWindows() # import libraries import csv import cv2 import pytesseract def pre_processing(image): """ This function take one argument as input. this function will convert input image to binary image :param image: image :return: thresholded image """ gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # converting it to binary image threshold_img = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # saving image to view threshold image cv2.imwrite('processed/images/thresholded.png', threshold_img) cv2.imshow('threshold image', threshold_img) # Maintain output window until # user presses a key cv2.waitKey(0) # Destroying present windows on screen cv2.destroyAllWindows() return threshold_img def parse_text(threshold_img): """ This function take one argument as input. this function will feed input image to tesseract to predict text. :param threshold_img: image return: meta-data dictionary """ # configuring parameters for tesseract tesseract_config = r' --oem 3 -l eng+chi_sim+chi_tra+spa+por+grc+deu+ell+fas+fil+heb+hin+ita+jpn+kor+lat+nep+osd+pol+rus+spa+swa+tel+tha+yor --psm 6' # now feeding image to tesseract details = pytesseract.image_to_data(threshold_img, output_type=pytesseract.Output.DICT, config=tesseract_config, lang='eng') return details def draw_boxes(image, details, threshold_point): """ This function takes three argument as input. it draw boxes on text area detected by Tesseract. it also writes resulted image to your local disk so that you can view it. :param image: image :param details: dictionary :param threshold_point: integer :return: None """ total_boxes = len(details['text']) for sequence_number in range(total_boxes): #if int(details['conf'][sequence_number]) > threshold_point: (x, y, w, h) = (details['left'][sequence_number], details['top'][sequence_number], details['width'][sequence_number], details['height'][sequence_number]) image = cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) # saving image to local cv2.imwrite('processed/images/captured_text_area.png', image) # display image cv2.imshow('captured text', image) # Maintain output window until user presses a key cv2.waitKey(0) # Destroying present windows on screen cv2.destroyAllWindows() def format_text(details): """ This function take one argument as input.This function will arrange resulted text into proper format. :param details: dictionary :return: list """ parse_text = [] word_list = [] last_word = '' for word in details['text']: if word != '': word_list.append(word) last_word = word if (last_word != '' and word == '') or (word == details['text'][-1]): parse_text.append(word_list) word_list = [] return parse_text def write_text(formatted_text): """ This function take one argument. it will write arranged text into a file. :param formatted_text: list :return: None """ with open('processed/text_detected/text_detected.txt', 'w', newline="") as file: csv.writer(file, delimiter=" ").writerows(formatted_text) if __name__ == "__main__": # reading image from local image = cv2.imread('image_resize.png') # calling pre_processing function to perform pre-processing on input image. thresholds_image = pre_processing(image) # calling parse_text function to get text from image by Tesseract. parsed_data = parse_text(thresholds_image) # defining threshold for draw box accuracy_threshold = 30 # calling draw_boxes function which will draw dox around text area. draw_boxes(thresholds_image, parsed_data, accuracy_threshold) # calling format_text function which will format text according to input image arranged_text = format_text(parsed_data) # calling write_text function which will write arranged text into file write_text(arranged_text)