radames commited on
Commit
205e830
·
1 Parent(s): a8a1224

more instructions

Browse files
Files changed (1) hide show
  1. README.md +33 -13
README.md CHANGED
@@ -19,41 +19,61 @@ You need a webcam to run this demo. 🤗
19
  You need CUDA and Python 3.10, Mac with an M1/M2/M3 chip or Intel Arc GPU
20
 
21
  `TIMEOUT`: limit user session timeout
22
- `SAFETY_CHECKER`: disabled if you want NSFW filter off
23
  `MAX_QUEUE_SIZE`: limit number of users on current app instance
24
- `TORCH_COMPILE`: enable if you want to use torch compile for faster inference
25
 
26
- ### image to image
 
27
 
28
  ```bash
29
  python -m venv venv
30
  source venv/bin/activate
31
  pip3 install -r requirements.txt
 
 
 
 
 
 
32
  uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
33
  ```
34
 
35
- ### image to image ControlNet Canny
36
 
37
  Based pipeline from [taabata](https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy)
38
 
39
  ```bash
40
- python -m venv venv
41
- source venv/bin/activate
42
- pip3 install -r requirements.txt
43
  uvicorn "app-controlnet:app" --host 0.0.0.0 --port 7860 --reload
44
  ```
45
 
46
-
47
- ### text to image
48
 
49
  ```bash
50
- python -m venv venv
51
- source venv/bin/activate
52
- pip3 install -r requirements.txt
53
  uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
54
  ```
55
 
56
- or with environment variables
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  ```bash
59
  TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
 
19
  You need CUDA and Python 3.10, Mac with an M1/M2/M3 chip or Intel Arc GPU
20
 
21
  `TIMEOUT`: limit user session timeout
22
+ `SAFETY_CHECKER`: disabled if you want NSFW filter off
23
  `MAX_QUEUE_SIZE`: limit number of users on current app instance
24
+ `TORCH_COMPILE`: enable if you want to use torch compile for faster inference works well on A100 GPUs
25
 
26
+
27
+ ## Install
28
 
29
  ```bash
30
  python -m venv venv
31
  source venv/bin/activate
32
  pip3 install -r requirements.txt
33
+ ```
34
+
35
+ # LCM
36
+ ### Image to Image
37
+
38
+ ```bash
39
  uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
40
  ```
41
 
42
+ ### Image to Image ControlNet Canny
43
 
44
  Based pipeline from [taabata](https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy)
45
 
46
  ```bash
 
 
 
47
  uvicorn "app-controlnet:app" --host 0.0.0.0 --port 7860 --reload
48
  ```
49
 
50
+ ### Text to Image
 
51
 
52
  ```bash
 
 
 
53
  uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
54
  ```
55
 
56
+ # LCM + LoRa
57
+
58
+ Using LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more here](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556)
59
+
60
+
61
+
62
+ ### Image to Image ControlNet Canny LoRa
63
+
64
+
65
+ ```bash
66
+ uvicorn "app-controlnetlora:app" --host 0.0.0.0 --port 7860 --reload
67
+ ```
68
+
69
+ ### Text to Image
70
+
71
+ ```bash
72
+ uvicorn "app-txt2imglora:app" --host 0.0.0.0 --port 7860 --reload
73
+ ```
74
+
75
+
76
+ ### Setting environment variables
77
 
78
  ```bash
79
  TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload