Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import (
|
3 |
+
AutoTokenizer,
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoModelForSeq2SeqLM,
|
6 |
+
AutoProcessor,
|
7 |
+
AutoModelForSpeechSeq2Seq,
|
8 |
+
AutoModelForTextToWaveform
|
9 |
+
)
|
10 |
+
from diffusers import DiffusionPipeline
|
11 |
+
import time
|
12 |
+
import os
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
from huggingface_hub import HfApi, HfFolder, Repository
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
def prune_model(model, amount=0.5):
|
20 |
+
from torch.nn.utils import prune
|
21 |
+
for name, module in model.named_modules():
|
22 |
+
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
|
23 |
+
prune.l1_unstructured(module, name='weight', amount=amount)
|
24 |
+
prune.remove(module, 'weight')
|
25 |
+
return model
|
26 |
+
|
27 |
+
def quantize_to_q1_with_min(tensor, min_value=-1):
|
28 |
+
tensor = torch.sign(tensor)
|
29 |
+
tensor[tensor < min_value] = min_value
|
30 |
+
return tensor
|
31 |
+
|
32 |
+
def quantize_model_to_q1_with_min(model, min_value=-1):
|
33 |
+
for name, param in model.named_parameters():
|
34 |
+
if param.dtype in [torch.float32, torch.float16]:
|
35 |
+
with torch.no_grad():
|
36 |
+
param.copy_(quantize_to_q1_with_min(param.data, min_value))
|
37 |
+
|
38 |
+
def disable_unnecessary_components(model):
|
39 |
+
for name, module in model.named_modules():
|
40 |
+
if isinstance(module, torch.nn.Dropout):
|
41 |
+
module.p = 0.0
|
42 |
+
elif isinstance(module, torch.nn.BatchNorm1d):
|
43 |
+
module.eval()
|
44 |
+
|
45 |
+
def ultra_max_compress(model):
|
46 |
+
model = prune_model(model, amount=0.8)
|
47 |
+
quantize_model_to_q1_with_min(model, min_value=-0.05)
|
48 |
+
disable_unnecessary_components(model)
|
49 |
+
with torch.no_grad():
|
50 |
+
for name, param in model.named_parameters():
|
51 |
+
if param.requires_grad:
|
52 |
+
param.requires_grad = False
|
53 |
+
param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
|
54 |
+
param.data = param.data.half()
|
55 |
+
try:
|
56 |
+
model = torch.jit.script(model)
|
57 |
+
except Exception:
|
58 |
+
pass
|
59 |
+
prune_model(model, amount=0.9)
|
60 |
+
model.eval()
|
61 |
+
for buffer_name, buffer in model.named_buffers():
|
62 |
+
if buffer.numel() == 0:
|
63 |
+
model._buffers.pop(buffer_name)
|
64 |
+
return model
|
65 |
+
|
66 |
+
def optimize_model_resources(model):
|
67 |
+
torch.set_grad_enabled(False)
|
68 |
+
model.eval()
|
69 |
+
for name, param in model.named_parameters():
|
70 |
+
param.requires_grad = False
|
71 |
+
if param.dtype == torch.float32:
|
72 |
+
param.data = param.data.half()
|
73 |
+
if hasattr(model, 'config'):
|
74 |
+
if hasattr(model.config, 'max_position_embeddings'):
|
75 |
+
model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
|
76 |
+
if hasattr(model.config, 'hidden_size'):
|
77 |
+
model.config.hidden_size = min(model.config.hidden_size, 768)
|
78 |
+
model = torch.jit.optimize_for_inference(model)
|
79 |
+
return model
|
80 |
+
|
81 |
+
def generate_random_responses(model, tokenizer, prompt, num_responses=5, max_length=50):
|
82 |
+
responses = []
|
83 |
+
for _ in range(num_responses):
|
84 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
85 |
+
output = model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50)
|
86 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
87 |
+
responses.append(response)
|
88 |
+
return responses
|
89 |
+
|
90 |
+
def patched_distilbert_forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None):
|
91 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
92 |
+
outputs = DistilBertModel.forward(self, input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
93 |
+
if not return_dict:
|
94 |
+
output_tuple = []
|
95 |
+
for v in [outputs.last_hidden_state, outputs.hidden_states, outputs.attentions]:
|
96 |
+
if v is not None:
|
97 |
+
output_tuple.append(v)
|
98 |
+
return tuple(output_tuple)
|
99 |
+
return outputs
|
100 |
+
|
101 |
+
def patched_forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None):
|
102 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
103 |
+
outputs = self.distilbert(input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
104 |
+
hidden_state = outputs[0]
|
105 |
+
pooled_output = self.pre_classifier(hidden_state[:, 0])
|
106 |
+
pooled_output = self.dropout(pooled_output)
|
107 |
+
logits = self.classifier(pooled_output)
|
108 |
+
if not return_dict:
|
109 |
+
output = (logits,) + outputs[1:]
|
110 |
+
return output
|
111 |
+
return logits
|
112 |
+
|
113 |
+
def patched_roberta_forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None):
|
114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
115 |
+
outputs = self.roberta(input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
116 |
+
hidden_state = outputs[0]
|
117 |
+
pooled_output = hidden_state[:, 0]
|
118 |
+
pooled_output = self.dropout(pooled_output)
|
119 |
+
logits = self.classifier(pooled_output)
|
120 |
+
if not return_dict:
|
121 |
+
output = (logits,) + outputs[1:]
|
122 |
+
return output
|
123 |
+
return logits
|
124 |
+
|
125 |
+
def optimize_for_low_resources(model):
|
126 |
+
model = ultra_max_compress(model)
|
127 |
+
model = optimize_model_resources(model)
|
128 |
+
model.config.max_position_embeddings = 256
|
129 |
+
model.config.hidden_size = 384
|
130 |
+
return model
|
131 |
+
|
132 |
+
def optimize_for_very_low_resources(model):
|
133 |
+
model = ultra_max_compress(model)
|
134 |
+
model = optimize_model_resources(model)
|
135 |
+
model.config.max_position_embeddings = 128
|
136 |
+
model.config.hidden_size = 256
|
137 |
+
return model
|
138 |
+
|
139 |
+
def remove_unused_model_components(model):
|
140 |
+
for name, param in model.named_parameters():
|
141 |
+
if param.numel() == 0:
|
142 |
+
model._parameters.pop(name)
|
143 |
+
return model
|
144 |
+
|
145 |
+
def auto_train_model(model, train_data, epochs=3):
|
146 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
|
147 |
+
model.train()
|
148 |
+
for epoch in range(epochs):
|
149 |
+
for batch in train_data:
|
150 |
+
inputs, labels = batch
|
151 |
+
optimizer.zero_grad()
|
152 |
+
outputs = model(**inputs, labels=labels)
|
153 |
+
loss = outputs.loss
|
154 |
+
loss.backward()
|
155 |
+
optimizer.step()
|
156 |
+
return model
|
157 |
+
|
158 |
+
def apply_extreme_filters(model):
|
159 |
+
model = ultra_max_compress(model)
|
160 |
+
model = optimize_model_resources(model)
|
161 |
+
model.config.max_position_embeddings = 128
|
162 |
+
model.config.hidden_size = 256
|
163 |
+
model = torch.jit.optimize_for_inference(model)
|
164 |
+
model = prune_model(model, amount=0.95)
|
165 |
+
quantize_model_to_q1_with_min(model, min_value=-0.1)
|
166 |
+
return model
|
167 |
+
|
168 |
+
def reduce_latency(model, tokenizer, prompt, num_responses=5, max_length=50):
|
169 |
+
responses = []
|
170 |
+
start_time = time.time()
|
171 |
+
for _ in range(num_responses):
|
172 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
173 |
+
output = model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50)
|
174 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
175 |
+
responses.append(response)
|
176 |
+
end_time = time.time()
|
177 |
+
latency = (end_time - start_time) / num_responses * 1000
|
178 |
+
return responses, latency
|
179 |
+
|
180 |
+
def create_gpt_distill_model():
|
181 |
+
gpt_model = GPT2LMHeadModel.from_pretrained("gpt2")
|
182 |
+
gpt_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
183 |
+
return gpt_model, gpt_tokenizer
|
184 |
+
|
185 |
+
def create_gemma_distill_model():
|
186 |
+
gemma_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b")
|
187 |
+
gemma_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
188 |
+
return gemma_model, gemma_tokenizer
|
189 |
+
|
190 |
+
def measure_performance(model, tokenizer, sequence_length=20, num_tokens=100):
|
191 |
+
inputs = tokenizer("A" * sequence_length, return_tensors="pt")
|
192 |
+
start_time = time.time()
|
193 |
+
for _ in range(num_tokens):
|
194 |
+
model.generate(**inputs)
|
195 |
+
end_time = time.time()
|
196 |
+
latency = (end_time - start_time) / num_tokens * 1000
|
197 |
+
tokens_per_second = num_tokens / (end_time - start_time)
|
198 |
+
return latency, tokens_per_second
|
199 |
+
|
200 |
+
def apply_diffusion_pipeline(prompt):
|
201 |
+
diffusion_pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell")
|
202 |
+
images = diffusion_pipeline(prompt).images
|
203 |
+
return images
|
204 |
+
|
205 |
+
def generate_responses_with_diffusion(prompt, use_diffusion):
|
206 |
+
if "imagina" in prompt.lower() or "imagine" in prompt.lower():
|
207 |
+
images = apply_diffusion_pipeline(prompt)
|
208 |
+
return images
|
209 |
+
return None
|
210 |
+
|
211 |
+
def generate_summary_with_bart(prompt):
|
212 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
213 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
214 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
215 |
+
summary_ids = model.generate(inputs, max_length=130, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
216 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
217 |
+
return summary
|
218 |
+
|
219 |
+
def generate_responses_with_bart(prompt):
|
220 |
+
if "resumir" in prompt.lower() or "resumime" in prompt.lower():
|
221 |
+
summary = generate_summary_with_bart(prompt)
|
222 |
+
return summary
|
223 |
+
return None
|
224 |
+
|
225 |
+
def apply_whisper_pipeline(prompt):
|
226 |
+
processor = AutoProcessor.from_pretrained("openai/whisper-small")
|
227 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-small")
|
228 |
+
inputs = processor(prompt, return_tensors="pt")
|
229 |
+
outputs = model.generate(**inputs)
|
230 |
+
transcription = processor.batch_decode(outputs, skip_special_tokens=True)
|
231 |
+
return transcription
|
232 |
+
|
233 |
+
def generate_transcription_with_whisper(prompt):
|
234 |
+
if "transcribe" in prompt.lower() or "transcribime" in prompt.lower():
|
235 |
+
transcription = apply_whisper_pipeline(prompt)
|
236 |
+
return transcription
|
237 |
+
return None
|
238 |
+
|
239 |
+
def apply_translation_pipeline(prompt):
|
240 |
+
tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
|
241 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
|
242 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
243 |
+
translated_ids = model.generate(inputs, max_length=50)
|
244 |
+
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
245 |
+
return translated_text
|
246 |
+
|
247 |
+
def generate_translation_with_t5(prompt):
|
248 |
+
if "traducir" in prompt.lower() or "traducime" in prompt.lower():
|
249 |
+
translation = apply_translation_pipeline(prompt)
|
250 |
+
return translation
|
251 |
+
return None
|
252 |
+
|
253 |
+
def apply_musicgen_pipeline(prompt):
|
254 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/musicgen-small")
|
255 |
+
model = AutoModelForTextToWaveform.from_pretrained("facebook/musicgen-small")
|
256 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
257 |
+
audio = model.generate(inputs)
|
258 |
+
return audio
|
259 |
+
|
260 |
+
def generate_music_with_musicgen(prompt):
|
261 |
+
if "m煤sica" in prompt.lower() or "canci贸n" in prompt.lower():
|
262 |
+
music = apply_musicgen_pipeline(prompt)
|
263 |
+
return music
|
264 |
+
return None
|
265 |
+
|
266 |
+
def apply_musicgen_melody_pipeline(prompt):
|
267 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/musicgen-melody")
|
268 |
+
model = AutoModelForTextToWaveform.from_pretrained("facebook/musicgen-melody")
|
269 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
270 |
+
audio = model.generate(inputs)
|
271 |
+
return audio
|
272 |
+
|
273 |
+
def generate_music_with_musicgen_melody(prompt):
|
274 |
+
if "melod铆a" in prompt.lower() or "melodia" in prompt.lower():
|
275 |
+
music = apply_musicgen_melody_pipeline(prompt)
|
276 |
+
return music
|
277 |
+
return None
|
278 |
+
|
279 |
+
def apply_stable_diffusion_pipeline(prompt):
|
280 |
+
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
|
281 |
+
images = pipeline(prompt).images
|
282 |
+
return images
|
283 |
+
|
284 |
+
def generate_responses_with_stable_diffusion(prompt):
|
285 |
+
if "imagen" in prompt.lower() or "image" in prompt.lower():
|
286 |
+
images = apply_stable_diffusion_pipeline(prompt)
|
287 |
+
return images
|
288 |
+
return None
|
289 |
+
|
290 |
+
def unify_models(*models):
|
291 |
+
combined_model = torch.nn.ModuleList(models)
|
292 |
+
return combined_model
|
293 |
+
|
294 |
+
def combined_filter(model):
|
295 |
+
model = ultra_max_compress(model)
|
296 |
+
model = optimize_model_resources(model)
|
297 |
+
model.config.max_position_embeddings = 128
|
298 |
+
model.config.hidden_size = 256
|
299 |
+
model = torch.jit.optimize_for_inference(model)
|
300 |
+
model = prune_model(model, amount=0.95)
|
301 |
+
quantize_model_to_q1_with_min(model, min_value=-0.1)
|
302 |
+
return model
|
303 |
+
|
304 |
+
def apply_filters_and_unify(model):
|
305 |
+
model = combined_filter(model)
|
306 |
+
model = remove_unused_model_components(model)
|
307 |
+
return model
|
308 |
+
|
309 |
+
def upload_to_huggingface(model, repo_name):
|
310 |
+
api = HfApi()
|
311 |
+
try:
|
312 |
+
api.create_repo(repo_id=repo_name, repo_type="model")
|
313 |
+
except Exception:
|
314 |
+
pass
|
315 |
+
model.save_pretrained(repo_name)
|
316 |
+
tokenizer.save_pretrained(repo_name)
|
317 |
+
repo = Repository(repo_name)
|
318 |
+
repo.push_to_hub()
|
319 |
+
|
320 |
+
def apply_extreme_filters_and_upload(model, repo_name):
|
321 |
+
model = apply_extreme_filters(model)
|
322 |
+
upload_to_huggingface(model, repo_name)
|
323 |
+
|
324 |
+
def start_gradio_interface():
|
325 |
+
def process_prompt(prompt):
|
326 |
+
response = {
|
327 |
+
"summary": generate_responses_with_bart(prompt),
|
328 |
+
"transcription": generate_transcription_with_whisper(prompt),
|
329 |
+
"translation": generate_translation_with_t5(prompt),
|
330 |
+
"music": generate_music_with_musicgen(prompt),
|
331 |
+
"melody_music": generate_music_with_musicgen_melody(prompt),
|
332 |
+
"image": generate_responses_with_stable_diffusion(prompt),
|
333 |
+
"diffusion": generate_responses_with_diffusion(prompt, True)
|
334 |
+
}
|
335 |
+
return response
|
336 |
+
|
337 |
+
interface = gr.Interface(
|
338 |
+
fn=process_prompt,
|
339 |
+
inputs=gr.Textbox(label="Enter Prompt"),
|
340 |
+
outputs=[gr.Textbox(label="Summary"), gr.Textbox(label="Transcription"), gr.Textbox(label="Translation"),
|
341 |
+
gr.Audio(label="Music"), gr.Audio(label="Melody Music"), gr.Image(label="Image"), gr.Image(label="Diffusion")],
|
342 |
+
title="Multi-Function AI Model",
|
343 |
+
description="Generate summaries, transcriptions, translations, music, melodies, images, and diffusion responses."
|
344 |
+
)
|
345 |
+
interface.launch()
|
346 |
+
|
347 |
+
start_gradio_interface()
|
348 |
+
|
349 |
+
model_infos = [
|
350 |
+
{"model_name": "gpt2", "class": GPT2LMHeadModel},
|
351 |
+
{"model_name": "google/gemma-2-9b", "class": AutoModelForCausalLM}
|
352 |
+
]
|
353 |
+
|
354 |
+
for model_info in model_infos:
|
355 |
+
model = model_info["class"].from_pretrained(model_info["model_name"])
|
356 |
+
tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"])
|
357 |
+
optimized_model, responses, latency = optimize_model_with_all_optimizations(model, tokenizer, "Sample prompt for optimization.")
|
358 |
+
print(f"Model: {model_info['model_name']}")
|
359 |
+
print(f"Latency: {latency:.2f} ms")
|
360 |
+
print(f"Sample Responses: {responses}")
|
361 |
+
|
362 |
+
gpt_model, gpt_tokenizer = create_gpt_distill_model()
|
363 |
+
gemma_model, gemma_tokenizer = create_gemma_distill_model()
|
364 |
+
|
365 |
+
optimized_gpt_model, gpt_responses, gpt_latency = optimize_model_with_all_optimizations(gpt_model, gpt_tokenizer, "Sample prompt for GPT optimization.")
|
366 |
+
optimized_gemma_model, gemma_responses, gemma_latency = optimize_model_with_all_optimizations(gemma_model, gemma_tokenizer, "Sample prompt for Gemma optimization.")
|
367 |
+
|
368 |
+
combined_model = unify_models(optimized_gpt_model, optimized_gemma_model)
|
369 |
+
|
370 |
+
optimized_gpt_model_1gb = optimize_for_1gb_ram(optimized_gpt_model)
|
371 |
+
optimized_gemma_model_1gb = optimize_for_1gb_ram(optimized_gemma_model)
|
372 |
+
optimized_gpt_model_low = optimize_for_very_low_resources(optimized_gpt_model)
|
373 |
+
optimized_gemma_model_low = optimize_for_very_low_resources(optimized_gemma_model)
|
374 |
+
optimized_gpt_model_cpu = optimize_for_old_cpu(optimized_gpt_model)
|
375 |
+
optimized_gemma_model_cpu = optimize_for_old_cpu(optimized_gemma_model)
|
376 |
+
optimized_gpt_model_gpu = optimize_for_old_gpu(optimized_gpt_model)
|
377 |
+
optimized_gemma_model_gpu = optimize_for_old_gpu(optimized_gemma_model)
|
378 |
+
|
379 |
+
print("Models optimized for various resource constraints.")
|
380 |
+
|
381 |
+
diffusion_response = generate_responses_with_diffusion("Imagine a serene landscape", True)
|
382 |
+
if diffusion_response:
|
383 |
+
print("Diffusion response generated.")
|
384 |
+
|
385 |
+
summary_response = generate_responses_with_bart("Resumir este texto para obtener un resumen efectivo.", True)
|
386 |
+
if summary_response:
|
387 |
+
print("Summary response generated.")
|
388 |
+
|
389 |
+
transcription_response = generate_transcription_with_whisper("Transcribe this audio file.", True)
|
390 |
+
if transcription_response:
|
391 |
+
print("Transcription response generated.")
|
392 |
+
|
393 |
+
translation_response = generate_translation_with_t5("Traducir este texto al ingl茅s.", True)
|
394 |
+
if translation_response:
|
395 |
+
print("Translation response generated.")
|
396 |
+
|
397 |
+
music_response = generate_music_with_musicgen("M煤sica para una tarde tranquila.", True)
|
398 |
+
if music_response:
|
399 |
+
print("Music response generated.")
|
400 |
+
|
401 |
+
melody_music_response = generate_music_with_musicgen_melody("Melod铆a para relajaci贸n.", True)
|
402 |
+
if melody_music_response:
|
403 |
+
print("Melody music response generated.")
|
404 |
+
|
405 |
+
image_response = generate_responses_with_stable_diffusion("Imagen de un paisaje sereno.", True)
|
406 |
+
if image_response:
|
407 |
+
print("Image response generated.")
|
408 |
+
|
409 |
+
upload_to_huggingface(combined_model, "Ffftdtd5dtft/my_model")
|