Spaces:
Running
Running
Ffftdtd5dtft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
!pip install redis diffusers transformers accelerate torch gradio audiocraft huggingface_hub
|
2 |
-
|
3 |
import redis
|
4 |
import pickle
|
5 |
import torch
|
@@ -23,17 +21,15 @@ redis_password = os.getenv("REDIS_PASSWORD")
|
|
23 |
HfFolder.save_token(hf_token)
|
24 |
|
25 |
def connect_to_redis():
|
26 |
-
|
27 |
-
retry_delay = 1
|
28 |
-
for attempt in range(max_retries):
|
29 |
try:
|
30 |
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password)
|
31 |
-
redis_client.ping()
|
|
|
32 |
return redis_client
|
33 |
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError) as e:
|
34 |
-
print(f"
|
35 |
-
time.sleep(
|
36 |
-
raise ConnectionError("Failed to connect to Redis after multiple retries.")
|
37 |
|
38 |
def reconnect_if_needed(redis_client):
|
39 |
try:
|
@@ -46,59 +42,111 @@ def reconnect_if_needed(redis_client):
|
|
46 |
def load_object_from_redis(key):
|
47 |
redis_client = connect_to_redis()
|
48 |
redis_client = reconnect_if_needed(redis_client)
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def save_object_to_redis(key, obj):
|
53 |
redis_client = connect_to_redis()
|
54 |
redis_client = reconnect_if_needed(redis_client)
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def get_model_or_download(model_id, redis_key, loader_func):
|
58 |
model = load_object_from_redis(redis_key)
|
59 |
-
if
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
62 |
return model
|
63 |
|
64 |
def generate_image(prompt):
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def edit_image_with_prompt(image, prompt, strength=0.75):
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def generate_song(prompt, duration=10):
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def generate_text(prompt):
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def generate_flux_image(prompt):
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def generate_code(prompt):
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def generate_video(prompt):
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def test_model_meta_llama():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
def train_model(model, dataset, epochs, batch_size, learning_rate):
|
104 |
output_dir = io.BytesIO()
|
@@ -139,7 +187,7 @@ music_gen = load_object_from_redis("music_gen") or MusicGen.get_pretrained('melo
|
|
139 |
save_object_to_redis("music_gen", music_gen)
|
140 |
text_gen_pipeline = load_object_from_redis("text_gen_pipeline") or transformers_pipeline(
|
141 |
"text-generation",
|
142 |
-
model="google/
|
143 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
144 |
device=device,
|
145 |
use_auth_token=hf_token,
|
|
|
|
|
|
|
1 |
import redis
|
2 |
import pickle
|
3 |
import torch
|
|
|
21 |
HfFolder.save_token(hf_token)
|
22 |
|
23 |
def connect_to_redis():
|
24 |
+
while True:
|
|
|
|
|
25 |
try:
|
26 |
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password)
|
27 |
+
redis_client.ping() # Verifica si la conexi贸n est谩 activa
|
28 |
+
print("Connected to Redis successfully.")
|
29 |
return redis_client
|
30 |
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError) as e:
|
31 |
+
print(f"Connection to Redis failed: {e}. Retrying in 1 second...")
|
32 |
+
time.sleep(1)
|
|
|
33 |
|
34 |
def reconnect_if_needed(redis_client):
|
35 |
try:
|
|
|
42 |
def load_object_from_redis(key):
|
43 |
redis_client = connect_to_redis()
|
44 |
redis_client = reconnect_if_needed(redis_client)
|
45 |
+
try:
|
46 |
+
obj_data = redis_client.get(key)
|
47 |
+
return pickle.loads(obj_data) if obj_data else None
|
48 |
+
except (pickle.PickleError, redis.exceptions.RedisError) as e:
|
49 |
+
print(f"Failed to load object from Redis: {e}")
|
50 |
+
return None
|
51 |
|
52 |
def save_object_to_redis(key, obj):
|
53 |
redis_client = connect_to_redis()
|
54 |
redis_client = reconnect_if_needed(redis_client)
|
55 |
+
try:
|
56 |
+
if not redis_client.exists(key): # Solo guarda si no existe
|
57 |
+
redis_client.set(key, pickle.dumps(obj))
|
58 |
+
print(f"Object saved to Redis: {key}")
|
59 |
+
except redis.exceptions.RedisError as e:
|
60 |
+
print(f"Failed to save object to Redis: {e}")
|
61 |
|
62 |
def get_model_or_download(model_id, redis_key, loader_func):
|
63 |
model = load_object_from_redis(redis_key)
|
64 |
+
if model:
|
65 |
+
print(f"Model loaded from Redis: {redis_key}")
|
66 |
+
return model
|
67 |
+
model = loader_func(model_id, torch_dtype=torch.float16)
|
68 |
+
save_object_to_redis(redis_key, model)
|
69 |
+
print(f"Model downloaded and saved to Redis: {redis_key}")
|
70 |
return model
|
71 |
|
72 |
def generate_image(prompt):
|
73 |
+
redis_key = f"generated_image_{prompt}"
|
74 |
+
image = load_object_from_redis(redis_key)
|
75 |
+
if not image:
|
76 |
+
image = text_to_image_pipeline(prompt).images[0]
|
77 |
+
save_object_to_redis(redis_key, image)
|
78 |
+
return image
|
79 |
|
80 |
def edit_image_with_prompt(image, prompt, strength=0.75):
|
81 |
+
redis_key = f"edited_image_{prompt}_{strength}"
|
82 |
+
edited_image = load_object_from_redis(redis_key)
|
83 |
+
if not edited_image:
|
84 |
+
edited_image = img2img_pipeline(prompt=prompt, init_image=image.convert("RGB"), strength=strength).images[0]
|
85 |
+
save_object_to_redis(redis_key, edited_image)
|
86 |
+
return edited_image
|
87 |
|
88 |
def generate_song(prompt, duration=10):
|
89 |
+
redis_key = f"generated_song_{prompt}_{duration}"
|
90 |
+
song = load_object_from_redis(redis_key)
|
91 |
+
if not song:
|
92 |
+
song = music_gen.generate(prompt, duration=duration)
|
93 |
+
save_object_to_redis(redis_key, song)
|
94 |
+
return song
|
95 |
|
96 |
def generate_text(prompt):
|
97 |
+
redis_key = f"generated_text_{prompt}"
|
98 |
+
text = load_object_from_redis(redis_key)
|
99 |
+
if not text:
|
100 |
+
text = text_gen_pipeline([{"role": "user", "content": prompt}], max_new_tokens=256)[0]["generated_text"].strip()
|
101 |
+
save_object_to_redis(redis_key, text)
|
102 |
+
return text
|
103 |
|
104 |
def generate_flux_image(prompt):
|
105 |
+
redis_key = f"generated_flux_image_{prompt}"
|
106 |
+
flux_image = load_object_from_redis(redis_key)
|
107 |
+
if not flux_image:
|
108 |
+
flux_image = flux_pipeline(
|
109 |
+
prompt,
|
110 |
+
guidance_scale=0.0,
|
111 |
+
num_inference_steps=4,
|
112 |
+
max_sequence_length=256,
|
113 |
+
generator=torch.Generator("cpu").manual_seed(0)
|
114 |
+
).images[0]
|
115 |
+
save_object_to_redis(redis_key, flux_image)
|
116 |
+
return flux_image
|
117 |
|
118 |
def generate_code(prompt):
|
119 |
+
redis_key = f"generated_code_{prompt}"
|
120 |
+
code = load_object_from_redis(redis_key)
|
121 |
+
if not code:
|
122 |
+
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
123 |
+
outputs = starcoder_model.generate(inputs)
|
124 |
+
code = starcoder_tokenizer.decode(outputs[0])
|
125 |
+
save_object_to_redis(redis_key, code)
|
126 |
+
return code
|
127 |
|
128 |
def generate_video(prompt):
|
129 |
+
redis_key = f"generated_video_{prompt}"
|
130 |
+
video = load_object_from_redis(redis_key)
|
131 |
+
if not video:
|
132 |
+
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16)
|
133 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
134 |
+
pipe.enable_model_cpu_offload()
|
135 |
+
video = export_to_video(pipe(prompt, num_inference_steps=25).frames)
|
136 |
+
save_object_to_redis(redis_key, video)
|
137 |
+
return video
|
138 |
|
139 |
def test_model_meta_llama():
|
140 |
+
redis_key = "meta_llama_test_response"
|
141 |
+
response = load_object_from_redis(redis_key)
|
142 |
+
if not response:
|
143 |
+
messages = [
|
144 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
145 |
+
{"role": "user", "content": "Who are you?"}
|
146 |
+
]
|
147 |
+
response = meta_llama_pipeline(messages, max_new_tokens=256)[0]["generated_text"].strip()
|
148 |
+
save_object_to_redis(redis_key, response)
|
149 |
+
return response
|
150 |
|
151 |
def train_model(model, dataset, epochs, batch_size, learning_rate):
|
152 |
output_dir = io.BytesIO()
|
|
|
187 |
save_object_to_redis("music_gen", music_gen)
|
188 |
text_gen_pipeline = load_object_from_redis("text_gen_pipeline") or transformers_pipeline(
|
189 |
"text-generation",
|
190 |
+
model="google/gemini-2-2b-it",
|
191 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
192 |
device=device,
|
193 |
use_auth_token=hf_token,
|